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Abstract ∇
Between 2011 and 2015, NASA1’s MESSENGER2 spacecraft orbited Mercury, where it
collected magnetic measurements through the onboard magnetometer. With these,
several studies attempted to geometrically model the exact shape of the planet’s bow
shock and magnetopause boundaries. However, despite being highly complex, these
static models struggle to adapt to changing environments. In cases like this, where it is
necessary to capture fine structures in discrete signals, deep learning has been able to
outperform traditional modeling in various applications over the last decade. Hence,
we devise a deep neural network that identifies the spacecraft’s bow shock and magne-
topause crossings within a local time window of measurements and predicts upcoming
crossings beyond that window. The model achieves an overall macro F1 of 0.82 and ac-
curacies of 80% and 88% on the bow shock and magnetopause crossings, respectively.
Furthermore, we employ an active learning paradigm to determine howmanyMercury
years’ worth of observations are required for a representative model. We find that two
Mercury years’ worth of measurements are sufficient for a satisfactory performance,
which is only about a tenth of the entire data. This work may be relevant to future re-
search concerning the BepiColombo mission by ESA3 and JAXA4, whose space probes
will enter orbit around the planet in December 2025.

Deutsche Kurzfassung: Von 2011 bis 2015 befand sich die NASA-Raumsonde MESSENGER auf einer Um-
laufbahn um den Merkur, wo sie mit ihrem Magnetometer Messdaten sammelte. Auf deren Grundlage ver-
suchten einige Studien, die Bereiche der Bugstoßwellen und Magnetopause geometrisch zu modellieren. Trotz
ihrer Komplexität können diese statischenModelle nur schwer auf sich verändernde Umgebungen adaptiert wer-
den. In solchen Fällen, wo feine Strukturen in diskreten Signalen erfasst werdenmüssen, konnte Deep Learning in
den vergangenen Jahren klassische Modellierungsmethoden in verschiedenen Anwendungen übertreffen. Daher
entwickeln wir ein tiefes neuronales Netzwerk, das Überquerungen von Bugstoßwellen und der Magnetopause
durch das Raumfahrzeug innnerhalb eines lokalen Zeitfensters an Messdaten identifiziert und bevorstehende
Überquerungen außerhalb dieses Fensters vorhersagt. Das Modell erreicht einen Makro F1-Wert von 0.82 sowie
eine Korrektklassifikationsrate von 80% bzw. 88% für die Bugstoßwellen bzw. Magnetopause. Darüber hinaus
verwenden wir ein aktives Lernparadigma, um zu bestimmen, wie viele Merkurjahre an Daten für ein repräsen-
tatives Modell erforderlich sind. Wir stellen fest, dass die Messungen von zwei Merkurjahren für eine zufrieden-
stellende Leistung ausreichen, was nur etwa einem Zehntel der gesamten Daten entspricht. Diese Arbeit könnte
für künftige Forschungen im Zusammenhang mit der BepiColombo-Mission von ESA und JAXA relevant sein,
deren Raumsonden im Dezember 2025 in Umlaufbahnen um den Planeten eintreten werden.

1National Aeronautics and Space Administration
2MErcury Surface, Space ENvironment, GEochemistry, and Ranging
3European Space Agency
4Japan Aerospace EXploration Agency
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Chapter

Introduction 1
Mercury is the only planet in the inner solar system besides Earth with a large-scale
magnetic field. The magnetosphere of a planet is defined as the surrounding area where
itsmagnetic field constitutes the dominating force on charged particles. Mercury’smag-
netosphere differs from Earth’s in two key aspects: Firstly, Mercury’s magnetic field is
only around 1% as strong as that of Earth [Nes+74; And+10]. Secondly, since Mercury
resides in close proximity to the Sun, its magnetosphere is highly influenced by solar
weather conditions [KR95]. As a result, Mercury’s magnetosphere is comparatively
small and highly dynamic.

Figure 1.1: Schematic view of Mercury’s magnetic conditions. Taken from [Sla04].

Figure 1.1 shows a sketch of the physical mechanisms that are at play: Starting from
the upper atmosphere of the Sun, a plasma of charged particles called solar wind sets
off toward the planets. The solar wind consists mainly of electrons and protons from
ionized hydrogen aswell as alpha particles, i.e., helium nuclei. Initially, the plasma flow
is supersonic and therefore propagates faster than sound waves. As the solar wind ap-
proaches Mercury, it finally reaches a point where magnetic interaction with Mercury’s
magnetic field becomes significant. At this point, a shock wave arises that slows down
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the solar wind to subsonic speeds and deflects it around the planet. This encounter is
called the bow shock since the solar wind is displaced by Mercury’s magnetic field like
water by the bow of a ship. The region where the subsonic solar wind flows sideways
past Mercury is called magnetosheath. It forms an intermediate space between the bow
shock and the magnetopause, being the boundary of the magnetosphere. The described
processes and notions apply to any inner planet of our solar system [KR95]. Still, since
the solar wind weakens with the square of the distance from the Sun, they most promi-
nently take effect around the innermost planet, Mercury.

It has long been of scientific interest in the planetary science community to study the
bow shock and magnetopause signatures of Mercury. To this end, comprehensive em-
piric measurements were required. Thus, NASA launched the Mariner 10 space probe
in 1973 that encountered Mercury three times during the following two years. While
these fly-bys yielded first clues regarding the magnetic dynamics, the insights were
very limited. Hence, NASA decided to insert a spacecraft into orbit around Mercury
for long-term empirical study [Pea00].

DubbedMESSENGERas a tribute to the ancient Romangod lending the planet its name,
the spacecraft launched on 3 August 2004. After several fly-bys, it entered orbit around
Mercury on 11March 2011. On 30April 2015, the spacecraft crashed intoMercury’s sur-
face as it ran out of fuel [NAS19]. By then, MESSENGER had completed over 4000 or-
bits, yielding a vast amount of data from the onboardmagnetometer [And+07]. During
each orbit, the spacecraft usually passed from the interplanetarymagnetic field through
bow shock, magnetosheath, magnetopause andmagnetosphere regions ofMercury and
thereupon underwent the same sequence in reverse, as indicated in Figure 1.2. Hence,
the spacecraft provides measurement series from more than 8000 incidences of bow
shock and magnetopause crossings.

Figure 1.2: Schematic view of a typical MESSENGER orbit (red). Taken from [Zur+11].
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Based on the abundance of data from theMESSENGERmission, several studies propose
geometric models of Mercury’s magnetosphere [Joh+12; Win+13; Zho+15; Phi+20a].
However, due to their global and static nature, they only provide an average shape of
the bow shock and magnetopause crossings. The respective authors find the models
struggle to capture themany fluctuations and details present in the time series data. For
recognizing intricate patterns, deep learning has proven itself as a powerful modeling
technique in recent years. Hence, Lavrukhin et al. [Lav+20; Lav+21a; Lav+21b] are
currently working on modeling the crossings with a deep neural network, for which
they provide a prepared dataset [Par+21].

We follow the direction of Lavrukhin et al. by devising a deep model for Mercury’s
magnetodynamics. It processes orbits locally on short time windows on the order of
seconds or minutes. The model then predicts a magnetic region for each time step in
a window. To give a complete picture for an entire orbit, the local predictions for all
windows within an orbit can be integrated into a global one. The labels required for
supervised training come from Philpott et al., who have analyzed all orbits for bow
shock and magnetopause crossings [Phi+20a]. For an exemplary orbit, its magnetic
flux data along with the crossing annotations are shown in Figure 1.3.

m
ag

ne
tic

 fl
ux

 d
en

si
ty

flu
x 

va
ria

bi
lit

y

Figure 1.3: Magnetic flux density spatial components (RGB), ±magnitude (black) and
variability (orange) for a typical MESSENGER orbit with bow shock (SK) and magne-
topause (MP) annotations from Philpott et al. [Phi+20a].

Different orbits exhibit similarities in the magnetic field structure. We thus conjecture
that not all orbits’ data are required to obtain a representative model. It seems rea-
sonable that at least the orbits from one complete Mercury year are necessary to ensure
most conditions throughout the planet’s journey about the Sun are present at least once.
Since a Mercury year takes only 88 Earth days, the MESSENGER data comprise tens of
Mercury years. As the magnetic conditions should be similar at the same location in
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different Mercury years, it seems plausible that using only a few Mercury years’ worth
of orbits suffices to match the performance of a fully trained model. The notion of active
learning, borrowed from educational science, allows for adding samples to the training
process incrementally by their informativeness. In this vein, we examine how themodel
performance scales with available data on orbit-level.

Next to correctly identifying bow shock and magnetopause crossings, we also deem it
desirable to predict if such a crossing is coming up in the near futurewhen considering a
given timewindow. We extend our deepmodel’s classification task by a few future time
steps for which the model receives no measurements. This may be of scientific interest
when the next Mercury Mission, BepiColombo [Ben+10], initiates orbit entry in 2025:
Comparing live model predictions with the new insights obtained from the mission in
order to find out where the present conception of Mercury’s magnetosphere matches
reality and where it deviates significantly. After all, the data from BepiColombo will
be of higher quality than the MESSENGER data and also cover regions of the magneto-
sphere that the latter did not reach. Our active learning approach might then become
useful for model retraining with new data obtained from the mission.

Overall, our contributions may be summarized as follows:

1. We devise an end-to-end discriminative deep learningmodel capable of detecting
current and predicting soon-to-be-expected bow shock and magnetopause cross-
ings around Mercury from raw measurement data.

2. We investigate how the performance of a deep model scales with the number of
orbits used for training. Specifically, we explore how many Mercury years’ worth
of data are required for a sufficiently representative model.

3. We provide a high-quality codebase that may be used as a framework for further
studies on the topic. The source code is publicly available online.1

The remainder of this thesis is structured as follows: Chapter 2 discusses related work
and techniques useful for our endeavors. Chapter 3 describes theMESSENGERmagne-
tometer dataset, the crossing annotations, and our preprocessing pipeline. Based on the
dataset, Chapter 4 explains in-depth howwe formulate the deep learningmodel and the
active learning algorithm. Employing this methodology, Chapter 5 presents the central
experimental results and discusses their significance. Finally, Chapter 6 concludes with
a summary of our findings and an outlook on future work. Appendix A extensively
explains the mathematical background of our deep learning approach.

1https://freddie.kirschstein.io

https://freddie.kirschstein.io
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Related Work 2
Ourwork alignswith the recent research direction initiated byLavrukhin et al. [Lav+20;
Lav+21a; Lav+21b] who model Mercury’s bow shock and magnetopause boundaries
with deep learning. In particular, they employ a standard convolutional neural net-
work for classifying time steps in the MESSENGER time series. However, they shared
their progress so far only in the form of abstracts and short presentations, which denies
us further insights into their methodology and results. Luckily, they provide an en-
hanced version of the original MESSENGER magnetometer measurements, which are
grouped into orbits and augmented by additional data fields [Par+21]. We employ an
earlier version of their prepared dataset for this work. To our knowledge, there do not
exist any further deep learning approaches for modeling Mercury’s magnetodynamics.
We thus broaden the scope by referring to other modeling approaches based on the
MESSENGER magnetometer data and research on deep learning for related time series
tasks. In addition, we briefly review active learning literature.

Once the first MESSENGER measurements became available, several exact geometric
models of Mercury’s magnetic regions were proposed. Johnson et al. [Joh+12] use
the measurements of MESSENGER’s first three Mercury years in orbit to geometrically
model the magnetic field inside the magnetosphere, assuming a paraboloid of revolu-
tion. Winslow et al. [Win+13] determine the average shape and location of the bow
shock and magnetopause by fitting empirical models to the MESSENGER magnetome-
ter data. They find that figures of revolution can best represent both boundaries, in par-
ticular, a hyperboloid and a figure similar to the Earth’s magnetopause shape, respec-
tively. Zhong et al. [Zho+15] use MESSENGER data from 24 March 2011 to 17 March
2014 to identify circa 5700 magnetopause crossings. They model the magnetopause
as a three-dimensional non-axially symmetric shape. Finally, Philpott et al. [Phi+20a]
extend the aforementioned studies by identifying bow shock and magnetopause cross-
ings for the complete orbital mission and modeling the average boundary shape. They
find that Mercury’s average magnetopause is well modeled by both an axisymmetric
shape and a three-dimensional shape with indentations. All these approaches share
the drawback of considering static models that cannot capture changing conditions in
the environment since they propose a fixed geometric shape cemented for all times. The
only way in which we rely on them is by utilizing the crossing annotations provided by
Philpott et al. [Phi+20b] for supervised deep learning.
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The MESSENGER measurements are time series data, a domain where deep learning
has been successful for some time now. This is evident from the many applications em-
ploying neural networks [Lai+18; LZ21; Ngu+18]. In time series and computer vision
tasks, it is common to process not the entire input but apportion it with a sliding win-
dow algorithm [Die02; SL11; Sel+17]. We employ this approach as well to achieve a
feasible model formulation. For our specific task of time series classification with neu-
ral networks, Ismail-Fawaz et al. [Ism+19] provide a recent survey. In particular, they
conduct an empirical study of deep neural network architectures commonly used for
time series classification. We leverage their findings for constructing our architectures,
refined to the task at hand.

Regarding the notion of active learning, Burr Settles [Set09] conducted the first large-
scale survey of existing literature. He summarizes various scenarios and creates a tax-
onomy of approaches that is now considered to be standard. Later, he extended this
survey to a complete book [Set12] about active learning that includes more theoretical
background and discussion of methods. We take advantage of Settles’ work for pinning
down an active learning strategy appropriate to our setting. Ren et al. [Ren+20] survey
active learning in the more specific context of deep learning. There exist several active
learning approaches explicitly designed for time series classification [He+15a; PLN17].
However, none of these fits the hierarchical two-layer structure of our setting, where the
samples are on window-level, but active learning shall operate on orbit-level. While the
notion of multiple-instance active learning [SCR07] addresses group-wise increment,
it requires each sample in a group to have the same label. By and large, as no existing
approach applies to our scenario, we must devise a custom framework.
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Foundational to our study is the data provided by theMESSENGERmission. Hence, we
first need to investigate the available data and prepare it for use in a machine learning
model. Section 3.1 describes the overall structure of the MESSENGER magnetometer
observations. Section 3.2 is concerned with the existing bow shock and magnetopause
crossing annotations. Finally, section 3.3 explains all preprocessing steps that we em-
ploy to ensure a training-ready dataset.

3.1 MESSENGER Observations

The MESSENGER measurements used in this work stem from a previous version of
the published dataset by Parunakian et al. [Par+21]. They comprise 4082 orbits of the
spacecraft around Mercury in total. A single orbit contains time steps from one apoap-
sis2 to the next on the resolution of one second. The number of time stepswithin an orbit
thus hardly fluctuates. However, on 16 April 2012, the MESSENGER spacecraft acceler-
ated to change from 12-hour orbits to 8-hour orbits. Hence the orbit lengths drop from
around 42000 seconds to about 29000 seconds from that date onwards.

We summarize the available measurements for each time step in Table 3.1. Their vast
majority can be grouped into triples of vector-valued numerical quantities. For some
of them, their euclidian norm is already precalculated. The only categorical feature is a
marker that indicates certain extrema of the spacecraft’s position throughout the orbit.
The vectorial quantities are highly redundant and mostly differ in the choice of coordi-
nate system. For instance, the spacecraft position comes in four different formulations.
However, themagnetic flux density measurement error is only given in themost widely
used coordinate system: TheMercury SolarOrbital (MSO) coordinates specify the space-
craft’s position in terms of its distance to Mercury’s center. The x-axis points to the sun,
the y-axis in the opposite direction of the spacecraft’s orbital movement and the z-axis
points northwards to complete the right-handed system.

For an exemplary orbit, Figures 3.1 and 3.2 plot themagnetic flux density and spacecraft
position in MSO coordinates, respectively. One clearly sees the increase in flux density
magnitude as the spacecraft approaches the planet towards the center of the plots.

2The apoapsis of an elliptic orbit is the point farthest away from the planet.
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Column Type Description
DATE datetime64 ISO 8601 formatted timestamp

X_MSO float64 Spacecraft position x in MSO coord system [km]
Y_MSO float64 Spacecraft position y in MSO coord system [km]
Z_MSO float64 Spacecraft position z in MSO coord system [km]

BX_MSO float64 Magnetic flux density x component in MSO coord system [nT]
BY_MSO float64 Magnetic flux density y component in MSO coord system [nT]
BZ_MSO float64 Magnetic flux density z component in MSO coord system [nT]

DBX_MSO float64 Magnetic field measurement error x component in MSO coords [nT]
DBY_MSO float64 Magnetic field measurement error y component in MSO coords [nT]
DBZ_MSO float64 Magnetic field measurement error z component in MSO coords [nT]

RHO_DIPOLE float64 Dipole-centric spacecraft distance [km]
PHI_DIPOLE float64 Spacecraft magnetic azimuth [rad]
THETA_DIPOLE float64 Spacecraft magnetic latitude [rad]

BX_DIPOLE float64 Planetary model dipole magnetic field x component in MSO [nT]
BY_DIPOLE float64 Planetary model dipole magnetic field y component in MSO [nT]
BZ_DIPOLE float64 Planetary model dipole magnetic field z component in MSO [nT]
BABS_DIPOLE float64 Planetary model dipole total magnetic field magnitude [nT]

RHO float64 Planetocentric spacecraft distance [km]
RXY float64 Spacecraft distance to the MSO z axis [km]

X float64 Mercury heliocentric position x in SE coord system [km]
Y float64 Mercury heliocentric position y in SE coord system [km]
Z float64 Mercury heliocentric position z in SE coord system [km]
D float64 Mercury heliocentric distance [km]

VX float64 Mercury orbital velocity x component in SE coord system [km/sec]
VY float64 Mercury orbital velocity y component in SE coord system [km/sec]
VZ float64 Mercury orbital velocity z component in SE coord system [km/sec]
VABS float64 Mercury orbital velocity magnitude [km/sec]

COSALPHA float64 Cosine of Mercury azimuth angle in SE coord system

EXTREMA int64 Marker indicating extreme positions:


2 apoapsis

−2 periapsis
1 max planet distance

−1 min planet distance
0 otherwise

Table 3.1: Overview of all features in the MESSENGER magnetometer dataset.
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Figure 3.1: Magnetic flux density MSO components and norm for an exemplary orbit.
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Figure 3.2: Spacecraft MSO position components and norm for an exemplary orbit.
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3.2 Crossing Labels

Asmentioned inChapter 1, we take advantage of thework fromPhilpott et al. [Phi+20b]
who localized bow shock andmagnetopause crossings for the entireMESSENGERmis-
sion. In particular, they determined the times of spacecraft entry and exit for each cross-
ing. With 4019 out of 4082, almost all orbits receive a complete set of those crossing an-
notations. The remainder is only partially annotated due to special magnetic conditions
where the crossings did not happen in the usual succession.

For details on how the annotations were obtained, we refer to their publication and
only stress two particular points: Because the bow shock and magnetopause crossings
moved rapidly relative to the spacecraft, they were typically crossed multiple times in
a row. Philpott et al. decided not to label these successive crossings individually but to
combine them into a single larger crossing. Furthermore, the boundaries could not be
clearly identified in some cases due to low magnetic flux variability. In these cases, the
boundaries were chosen conservatively, potentially overestimating their extent.

Figure 3.3 shows our exemplary orbit #42 from the previous section supplemented
with its bow shock (SK) and magnetopause (MP) crossings as well as the resulting
regions of interplanetary magnetic field (IMF), magnetosphere (MSp) and the gray
area of magnetosheath (MSh). We will use these abbreviations and the plot shading
colors consistently throughout this work.
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Figure 3.3: Magnetic regions for an exemplary orbit.
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In order to build a local deep learning model, we leverage the global crossing annota-
tions to label each time step on every orbit with an ordinal from 0 to 4 indicating the
associated magnetic region, which will yield a five-class classification problem. Table
3.2 displays the resulting distribution of labels over the entire dataset. It is intrinsically
unbalanced, since the bow shock and magnetopause crossings usually last for only sev-
eral seconds or minutes while the spacecraft spends hours far away from Mercury in
the interplanetary magnetic field. This imbalance is also evident from Figure 3.3.

label magnetic region share
0 interplanetary magnetic field (IMF) 65.4%
1 bow shock crossing (SK) 3.7%
2 magnetosheath (MSh) 14.5%
3 magnetopause crossing (MP) 2.3%
4 magnetosphere (MSp) 14.1%

Table 3.2: Labels for a single time step and their frequency.

3.3 Preprocessing

For a machine learning model to be able to learn from the labeled MESSENGER obser-
vations, we employ several preprocessing steps. In particular, they comprise cleaning
the data, putting aside holdout sets for validation, and statistical normalization.

3.3.1 Faulty Orbit Removal

Not all labeled orbits are immediately usable for our purposes. A significant number of
them exhibit unwanted properties, wherefore we call such orbits faulty. We rigorously
remove all those orbits from the productive dataset. In total, we identify four properties
qualifying an orbit as faulty:

NaN Values. Some orbits do not provide measurements for all time steps or all fea-
tures. Especially in the beginning and the end of the MESSENGER mission, but
also during occasional phases in between, a lack of measurements occurs. This
filtering step affects the most orbits, with a total of 462.

Missing Time Steps. Some orbits contain fewer time steps than the difference of the
last and first time step in seconds would imply. Hence, steps are missing in be-
tween. For instance, orbit #3565 consists of only three and #3686 of only 1641
seconds, whereas the usual length is around thirty and forty thousand seconds.
This is unpleasant for two reasons: Firstly, such orbits are in noway comparable to
the other, complete ones. Secondly, our machine learning model requires a con-
tiguous sequence of measurements without jumps to learn from. This filtering
step affects a total of 290 orbits.
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Figure 3.4: An orbit with significant outliers due to measurement errors.

Flux Outliers. Some orbits contain time steps for which the measured flux density
magnitude is extreme. Figure 3.4 exemplifies this problem for an orbit where the
norm of flux density exceeds the usual magnitude by several orders. As such out-
liers can utterly impair the results and performance of machine learning models,
we apply the three-sigma rule to detect orbits with outliers as follows: For each or-
bit o ∈ N, we determine the maximum occurring flux density magnitude B

(o)
max.

Now consider the continuous random variable Bmax of maximum flux norms. We
regard o as outlier orbit whenever its maximum flux exceeds the empirical mean
by three empirical standard deviations, i.e., B(o)

max ≥ µ + 3σ where µ ≈ E[Bmax]

and σ ≈
√

Var[Bmax]. A total of 10 orbits turn out as outliers by this method.3

Overhanging Crossings. Some orbits exhibit a crossing anomaly where their cross-
ings extend into neighboring orbits or vice versa. Often in these cases, the cross-
ings also cover an extreme time range, presumably resulting from Philpott et al.’s
conservative annotation approach. We give an example of this “neighbor intru-
sion” in Figure 3.5. It affects a total of 437 orbits.

Although we could recover some faulty orbits by interpolation methods, we decide to
rigorously remove all of them. After all filtering steps, 3151 orbits still remain out of the
4019 labeled ones. Note that some orbits exhibit multiple faults.

3An expectable order of magnitude: If Bmax ∼ N (µ, σ2) were normally distributed, the probability of
being below the three-sigma threshold would be P[Bmax ≤ µ + 3σ] = P[Bmax−µ

σ
≤ 3] = Φ(3) ≈ 99.87%.

Applied to 4019 overall labeled orbits, this would give a bit over 5 outliers.
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Figure 3.5: Example of an overhanging bow shock crossing. The outer bow shock cross-
ing of the orbit at the top extends beyond the apoapsis into the orbit at the bottom. This
is presumably due to special solar wind conditions.
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3.3.2 Dataset Partitioning

To assess the performance of our machine learning model, we need to hold out some
part of the data that will never be used for learning. As is the undisputed standard in
machine learning, we employ a random split into three disjoint partitions: A training,
evaluation and test set, respectively. Since, unfortunately, machine learning literature
disagrees upon the meaning of the terms evaluation and test set, we define explicitly
how we use these terms in this work:

• Training set (70 %, 2207 orbits): The subset used for actually training the
machine learning model.

• Evaluation set (20 %, 630 orbits): The subset used for validating the perfor-
mance of models during the internal development process.

• Test set (10 %, 316 orbits): The subset used for validating the performance
of a final model at the end of development.

Throughout this work, we use these terms exactly in the sense given above.

3.3.3 Feature Normalization

Due to their astronomical nature, the features in the MESSENGER observations vastly
differ in their value range. Having such differently-scaled input features poses a major
problem for deep model training: Since almost all transformations in a neural network
model are linear combinations of weights and the input, the gradient with respect to the
parameters is larger in dimensions of the feature space with larger scales. Hence, the
steps do not proceed straight towards a local minimum but exhibit a zig-zag behavior.
This slows down the overall convergence of gradient descent [Cur44; LeC+98].

Furthermore, differently-scaled features cause a neural network to put different impor-
tance on them. Although it could in theory learn to undo the scale difference, this does
not happen in practice [Hua+20]. We do not want to introduce a prior belief about the
relative importance of the features since it contradicts the end-to-end notion. Leaving
the features unnormalized would effectively be implicit feature engineering.

To get rid of scale differences, we employ z-normalization: Let x be a continuous random
variable describing one of the input features with empiric mean µ ≈ E[x] and empiric
standard deviation σ ≈ Var[x]. Thenwe feed themodel not the original feature x, but its
standardization x−µ

σ with approximately zero mean and unit variance. Normalization
techniques like this have been shown to have huge effects on the learning capability of
deep models [Zha+21].
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Methodology 4
Having investigated and prepared theMESSENGER observations, we nowdescribe our
approach in detail. Section 4.1 establishes the central machine learning task formula-
tion that underlies this work. Next, Section 4.2 specifies the employed neural network
architectures which we compare empirically later. Finally, Section 4.3 explains how we
incorporate active learning into the system.

4.1 The Freddie Task

To build a deep learning model, we first need to consider what exact task it is supposed
to solve. In particular, we need to specify the expected input and output of the neural
network. Naively, we would simply feed an entire orbit’s time series as input to the
model. However, there are several drawbacks to this approach:

1. As pointed out in Section 3.1, orbits vary greatly in length. Alas, not all neural
network architectures support variably sized inputs. In principle, we could cope
with different lengths by cropping each time series to the minimum occurring
length. However, in this vein, we would discard a fourth of the information in the
earlier orbits where MESSENGER had a lower velocity.

2. The absolute length of orbits with tens of thousands of time steps is relatively
high for machine learning standards. Therefore, even if we only employed archi-
tectures that allow for variable input sizes, the processing and memory burden
they brought along would be infeasibly high.

3. Processing an entire orbit at once would counteract our goal of a local model. As
outlined in Chapter 1, we focus on exploiting local structures to help better un-
derstand the bow shock and magnetopause boundaries. Feeding the model with
an entire orbit might provide it with too much information to be useful, since we
cannot figure out from where in the orbit the model draws its conclusions.

For the reasons given above, wepresent only short, contiguous subsequences of an input
series to the model. This is done with the sliding window algorithm [Die02] outlined
in Algorithm 4.1: A window covering w ∈ N time steps slides across the time series
T ∈ Rd×n in chronological order with stride s ∈ N. Each position of the window yields
a slice of the time series that constitutes an input for the model.
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/* extracts sliding windows from the given time series */
sliding_window(T ∈ Rd×n : time series, w ∈ N : window size, s ∈ N : stride):

1 W := ∅ // contains extracted windows
2 i := 0 // index of first step in window
3 while i+ w ≤ n :
4 W :=W ∪ {T:,i:(i+w−1)} // add next window
5 i := i+ s

6 returnW

Algorithm 4.1: Conceptual overview of the window sliding strategy.

Besides solving the discussed issues, using overlapping slices of the time series brings
forth another potential: With a sufficiently small stride, each time step of the original
series is contained inmultiple windows and thus reused, but in different arrangements.
This essentially constitutes a form of data augmentation which dramatically increases
the number of training samples the model can learn from. To get the most out of the
MESSENGER time series, we choose a stride of s = 1. Furthermore, this choice ensures
the model gets to see all bow shock and magnetopause crossings in every possible po-
sition within a time window. If we chose s = w instead and were unlucky, the crossings
might happen to always appear at the same position within a window, such that the
model would not be incentivized to develop translation-equivariance.

To summarize, the model’s input is a window of w ∈ N successive time steps. Each of
these time steps has dimensionality d ∈ N, which is the number of used scalar features.
Each of the features has been normalized according to Section 3.3.3. We will leave the
exact choice of features unspecified for now, since their selection is carried out empiri-
cally in Section 5.1. Instead, we abstractly consider a formal window:

X =
[
x(1) x(2) · · · x(w)

]
∈ Rd×w.

Let us now turn to the output specification. We desire a discriminative model, classify-
ing each time stepwith themagnetic region inwhich the spacecraft was at thatmoment.
Recall from Section 3.2 that there are exactly five mutually exclusive regions. However,
directly predicting the identifier number of a class would be a flawed specification since
it would assume a linear ordering of the classes which does not exist.4 Therefore, we
provide the expected output to the model per time step as one-hot vectors, or simply
standard basis vectors. These take the form [0, . . . , 0, 1, 0, . . . , 0]T with the position of 1
indicating the class. Since we expect the model to predict a class per time step, we pack
multiple of these one-hot vectors next to each other into a matrix.

4In fact, they have a cyclic ordering, the future exploitation of which we discuss in Chapter 6.
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We may think of the last time step x(w) in a window as representing the “present”. In-
stead ofmerely classifying the “past” time stepswithin awindow,wedeem it interesting
to also let the model predict the magnetic region for f ∈ N future time steps. Thus, the
expected output matrix of one-hot vectors is Y ∈ R5×(w+f). This essentially imposes
two tasks on the neural network: Classifying available time steps and classifying future
time steps for which measurements are not provided. We conjecture that thismulti-task
approach might benefit generalization by forcing the model to learn shared represen-
tations that foster both tasks. In this work, we fix the window size to be 2 minutes, i.e.,
w = 120 seconds, and the future size to be f = 20 seconds.

Formally, the task could be termed multi-dimensional multi-class classification with a
future component. We dub it the Freddie task: Given thewindowX , predict a sequence
of magnetic region probabilities, where each column sums up to one:

Ŷ :=


p1,1 · · · p1,w p1,w+1 · · · p1,w+f

...
...

...
...

p5,1 · · · p5,w p5,w+1 · · · p5,w+f

 ∈ [0, 1]5×(w+f)

To measure the error between Ŷ and the ground-truth label Y , we employ the cross-
entropy loss as derived in SectionA.1. Ours is the special case of categorical cross-entropy,
since the ground-truth one-hot output constitutes a Dirac distribution. However, we do
not use vanilla cross-entropy, but a weighted version of it. The reason is the consider-
able class imbalance discussed in Section 3.2. If we were to weight each class the same,
the minority classes of bow shock and magnetopause crossings would be immensely
discriminated by the discriminator, or worse, even completely ignored. To counteract
this, we give each time step’s loss a weight inversely proportional to its class’ frequency
fc ∈ N in the dataset:

wc :=
∑5

i=1 fi
fc

The resulting weighted loss for a single time step j in a window is then:

Lj(Ŷ ,Y ) := −
5∑

i=1

wiYij log(Ŷij)

Note that the sum is actually a fake sum, since only exactly one of the Yij is non-zero.
By averaging across all time steps, we straightforwardly obtain the window loss:

L(Ŷ ,Y ) := 1

w + f

w+f∑
j=1

Lj(Ŷ ,Y ) = − 1

w + f

5∑
i=1

wi

w+f∑
j=1

Yij log(Ŷij)

The expected loss over all windows extracted from the training set then forms the total
loss we seek to optimize.
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4.2 Model Architectures

With the task definition consolidated, we seek a suitable neural network model for it.
We consider a total of six architecture categories, of whichwe experimentally determine
the best instances. For clearness, we present only the final architectures for each cate-
gory. All models use the rectified linear unit (ReLU) as activation due to its advantages
described in Section A.3.2. Their input has the window size w = 120 and the future
size f = 20 that we fixed in Section 4.1. Furthermore, the channel dimensionality d = 9

is a result of the empirical feature selection undertaken in Section 5.1. All six model
architectures are outlined in Figures 4.1 and 4.2.

MLP For a solid baseline, we employ the simplest possible architecture: A multi-layer
perceptron (MLP) as described in Section A.3.1. It consists of two dense hidden
layers with 128 neurons each and solely operates on the flattened window. There-
fore, the MLP is completely agnostic to the structure of the input, which consists
of a time dimension and a channel dimension.

CNN To make use of the time series structure, we proceed with a classical convolutional
neural network (CNN). We explain the involved components comprehensively in
Section A.3.3. First, the input passes through three successive one-dimensional
convolutional layers with subsequent max-pooling. The 1D convolutions all em-
ploy “same” padding and can also be thought of as 2D convolutions with full
channel width. As often in deep time series classification [Ism+19] we find that
increasing the convolution kernel sizes with deeper layers works well; in our case,
the succession is 3-5-7. The convolutional block’s result is then flattened and pro-
cessed by a single dense layer to yield the required output shape. The dense layer
is the reason for employing max-pooling, since the latter reduces the parameter
number in this final layer, which however is still rather high.

FCNN A downside to the vanilla CNN is its final dense layer having a lot of trainable
parameters. This happens because ours is a sequence-to-sequence task, while
CNNs were originally developed for summary tasks where the output size is
much smaller than the input size. We circumvent this issue with a slightly modi-
fied version that discards the dense layer. For this reason, the result is often called
a fully-connected convolutional neural network (FCNN) [Ism+19]. The dense layer’s
substitute is two-fold: First, a singleton convolution converts the channel size to
the required flattened output size. Due to the kernel size of one, this is equiva-
lent to a point-wise dense layer. Second, a global average pooling layer reduces
each resulting channel across the time dimension to a single value. The FCNNhas
no choice but to learn to use different channels for different features, since differ-
ent time steps within the same channel will eventually be combined. The FCNN
learns entirely through convolutional layers, which also speeds up training.
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RNN Both the CNN and FCNN exploit local patterns in the time series. Their con-
volutional layers may thus be thought of as feature extractors. However, they do
notmake use of temporal relationships that might follow a systematic rule. This is
what recurrent neural networks (RNN) as described in SectionA.3.4 achieve. Hence,
we add an RNN to the competition, consisting of three stacked LSTMs. Since our
task definition allows themodel to utilize the entire inputwindowwithout restric-
tions, all LSTMs are bi-directional. As RNNs are designed for sequencemodeling,
we require only a few additional components. Before the LSTMs, we add zero
padding that extends the input series by the desired amount of additional future
steps to predict. In the end, a point-wise dense layer reduces the dimensionality
from the internal LSTM state size to the number of classes.

CRNN To get the best of both worlds, we combine the feature extraction capabilities
of convolutional components with the temporal aspect addressed by recurrent
components into a single architecture. The resulting crossover is often called a
convolutional recurrent neural network (CRNN) and was successfully employed in
several time series tasks [ZPT17; Kao+18; ZD20]. We thus expect an improve-
ment over a plain CNN or RNN on the Freddie task as well. In this architecture, a
convolutional block is followed by a recurrent stack. Therefore, we dispense with
the pooling layers of the CNN and FCNN. Firstly, there is no memory-related
need for reducing the sequence length since RNNs are agnostic to it, applying the
same transformation to as many time steps as there are. Secondly, without pool-
ing, the convolutional block “only” extracts features while preserving the original
sequence length, making the recurrent operationmore meaningful. Besides, if we
employed pooling, we would have to upsample after the recurrent stack regard-
less, so we avoid a sequence length reduction in the first place.

CANN As discussed in Section A.3.5, recurrent networks are firstly slow to train and,
secondly, often fail to capture long-term dependencies, even with LSTMs. Hence,
we try an experimental architecture, replacing the second, recurrent part of the
CRNN with attention mechanisms. Deliberately alluding to CRNNs, we dub this
model a convolutional attentional neural network (CANN). Loosely following the
structure of a Transformer encoder [Vas+17], it employs several multi-head self-
attention layers separated by point-wise dense layers.

Admittedly, our architecture search space was biased towards small models with fewer
parameters due to resource and time limitations. We expect them to trivially increase
in performance by simply scaling them up and adding regularization. However, we are
only interested in the relative performance of the architectures, wherefore smaller ones
suffice. We evaluate all of the above architectures in Section 5.2 to find the “best” one.
The winner then forms the basis of all further investigations.
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Figure 4.1: Model Architecture Diagrams, Part 1. The concrete input and output sizes
result from the choice of window size w = 120, future size f = 20 and number of
features d = 9. The placeholder bs stands for the batch size.
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Figure 4.2: Model Architecture Diagrams, Part 2. The concrete input and output sizes
result from the choice of window size w = 120, future size f = 20 and number of
features d = 9. The placeholder bs stands for the batch size.
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4.3 Active Learning

Once a final model architecture is established via experimentation, we can turn to our
ultimate goal: Determining the minimum number of orbits required for a representa-
tive model of Mercury’s bow shock and magnetopause boundaries. As mentioned in
Chapter 1, we approach this question using the notion of active learning. Originally,
this is an instructional technique from education literature, where, instead of passively
digesting presented information, students actively participate in the learning process.

By viewing the neural network model as the learner, the active learning concept can be
transferred to a machine learning setting. Out of the three major active learning sce-
narios considered in the literature [Set09; Set12], ours is an instance of pool-based active
learning as illustrated in Figure 4.3. Initially untrained, the model repeatedly selects
samples from a pool of yet unlabeled samples. These receive corresponding labels by
an oracle, which could be a human annotator or, as in our case, simply the act of provid-
ing the held-back labels to the model. The newly obtained samples are finally added to
the training set, on which the model is retrained. This retraining comes in two flavors:
Either the model is trained from scratch on the enlarged training set, or the training
continues from the previously found parameters.

Figure 4.3: Illustration of pool-based active learning. Adapted from [Set09].

The active learning cycle was initially introduced into machine learning to reduce the
required amount of labeled samples. This becomes crucial when sample annotation is
costly, like for medical images. It has been shown that an effective active learning algo-
rithm can, in theory, accelerate labeling efficiency in an exponential manner [BBL09].
We may thus argue that, through active learning, the model can get the most out of the
available data, which leads to a nearly optimal learning curve.
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To address our performance scaling question, we increment the training set not by in-
dividual windows but on the level of entire orbits. In order to choose the next orbit(s)
to add, we need to rank all yet unused orbits according to an informativeness measure.
To this end, there exist several strategies [Set09], with increasing computational cost:

• Uncertainty Sampling: Select the samples for which the model prediction is least
certain according to an adequate uncertainty measure for the output distribution.

• Query by Committee: Train a committee of multiple models throughout the active
learning procedure, representing competing hypotheses, and select the samples
about which the committee disagrees most.

• Expected Model Change: Select the samples which would lead to the gradients of
highest magnitude if they were added to the training set. If their labels are not
known, the new gradient has to be estimated by an expectation over the output
probability distribution.

• Estimated Error Reduction: This approach is similar to the expected model change
strategy. Instead of maximizing the (estimated) future gradient, it minimizes the
(estimated) future loss when adding samples to the training set.

All of these sampling strategies can further be extended by density-weighting. For each
unlabeled sample, this method weights the base strategy’s informativeness score by
the average similarity of that sample to all samples in the dataset according to some
similaritymeasure. Densityweighting ensures that selected samples are not only highly
informative, but also representative of the input distribution.

Due to limited computing resources, we decide for an uncertainty sampling strategy.
Nowadays in deep active learning, solely relying on the top uncertain samples is dis-
couraged because they are most likely similar and lead to overfitting [Ren+20]. How-
ever, since we always add entire orbits’ worth of samples, this is no issue in our study!
We automatically get diversity and representativeness from the orbit-leveled process-
ing. For this reason, we also do not require density-weighting.

Since the Freddie task has a series of Multinoulli distributions as output, we may mea-
sure uncertainty as a function of the output probabilities. As discussed in Section A.1.1,
Shannon entropy is a mathematically well-funded measure of uncertainty in a probabil-
ity distribution. Hence, we choose entropy as the basis of our active learning endeavor:
Consider the training set D ⊆ Rd×w × {IMF, SK,MSh,MP,MSp}w+f with number of
features d ∈ N, window size w ∈ N and future size f ∈ N. Given a model prediction
Ŷ = [ŷ(1), . . . , ŷ(w+f)] ∈ [0, 1]5×(w+f), we define its uncertainty as

u(Ŷ ) := max
j

H(ŷ(j)) = −min
j

5∑
i=1

y
(j)
i log(y(j)i ),

where H : 44 → R is the Shannon entropy formulation on the standard 4-simplex.
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Since we intend to conduct active learning on the orbit level, we need to measure the
uncertainty on an entire orbit. To this end, we must reduce the individual window
uncertainties to a single orbit score. We are particularly interested in the bow shock
andmagnetopause crossings, and the evaluation in SectionA.4 shows that a deepmodel
confidently detects the other regions. Thus, we argue that the most uncertain windows
of an orbit will usually overlap with a crossing region. For this reason and to lessen
computational cost, we only consider the uncertainty of such windows for the overall
orbit uncertainty. Let Do ⊆ D be the windows belonging to the orbit o ∈ N and

D̃o := {(X,y) ∈ Do | y ∩ {SK,MP} 6= ∅}

be only those samples that overlapwith a bow shock ormagnetopause boundary region.
The average uncertainty over these windows defines the integrated orbit uncertainty of
a model f̂θ : Rd×w → Rd×(w+f) for the Freddie task:

Uf̂θ
(D̃o) := 1

|D̃o|

∑
(X,y)∈D̃o

u(f̂θ(X)).

Using this uncertainty measure, we formulate our active learning procedure in Algo-
rithm 4.2. Instead of strictly adding orbits one-by-one, we more generally allow for an
increment function ⮝ : N0 → N that yields the number of most uncertain orbits to add,
depending on the number of already seen orbits. Out of the two retraining strategies
described before, we decide not to retrain the model from scratch in each iteration but
continue learning with the previous parameter values to save computation time.

/* actively trains the given model on an incrementally growing
subset of the training data */

active_learning(f̂θ : Rd×w → Rd×(w+f) : model,
Ω ⊆ P(D) : set of all training orbits,
⮝ : N0 → N : increment function):

1 T := ∅ // current training orbits
2 while|T | < |Ω| :
3 U := hash_table() // empty hash map
4 for Do ∈ Ω \ T do
5 U [Do] := Uf̂θ

(D̃o) // determine orbit uncertainty

6 T := T ∪· top_k(U ,⮝(|T |)) // add ⮝(|T |) most uncertain orbits
7 f̂θ := train(f̂θ, T ) // retrain model on updated set

8 return f̂θ

Algorithm 4.2: Our active learning scheme.



Chapter

Experiments 5
With the scene set, we can now conduct empirical investigations. Section 5.1 explores
suitable input features from the MESSENGER data. Then, Section 5.2 describes our ar-
chitecture search and compares the final models. Consequently, section 5.3 extensively
evaluates the best model from the architecture comparison. Finally, Section 5.4 employs
our active learning strategy to analyze how model performance scales with available
data to address our central research question.

Training Setup: We use the PyTorch library [Pas+19] on a cluster with eighty
Intel® Xeon® Gold 6248 CPUs @ 2.50GHz, eight Nvidia® GeForce RTX 2080 Ti
GPUs and 512 GB RAM. As mentioned in Section 4.1, we fix the window size and
future size to be w = 120 and f = 20, respectively, and use a weighted categorical
cross-entropy loss. We minimize this loss with the Adam optimizer [KB15], hav-
ing an initial learning rate of α = 10−5 and the default first and second moment
running average coefficients of β1 = 0.9 and β2 = 0.99. The minibatch size is fixed
to 1024 samples as we observed this value to yield stable and efficient training. All
weights and biases are randomly initialized according to the PyTorch defaults, and
we initialize all pseudozrandom number generators with seed 42. The training’s
termination criterion is early stopping on evaluation loss with a patience of three,
i.e., once the loss on the evaluation set increases for three epochs in a row, train-
ing terminates. All performance metrics reported in this section apply to a model’s
state in the epoch of lowest evaluation loss.

5.1 Feature Selection

Prior to all further experimentation, we need to pin down the remaining variable that
we left unspecified in Chapter 4, namely which of the available features in Table 3.1 to
provide as input to the model. To begin with, it is reasonable not to tear apart groups
of semantically related features like the three spacecraft position coordinates. While in
principlewe could use any of the groups, we should not provide all of them to themodel
as input. For one, the hand-crafted EXTREMA feature leaks global information about a
time step. If its value is 2, for instance, the model can immediately draw from this that
the spacecraft is farthest away from Mercury on its orbit and thus most probably in



26 Chapter 5. Experiments

the interplanetary medium. Since our modeling approach is time-local and supposed
to only operate on actual measurements, we exclude EXTREMA from the game. Like-
wise, the manually added B[X|Y|Z|ABS]_DIPOLE feature group drops out since it does not
contain measurements, but predictions of a model for Mercury’s dipole [Par+21]. Fur-
thermore, recalling Section 3.1, the MESSENGER dataset contains multiple correlated
feature groups due to the spacecraft position being reformulated in different coordi-
nate systems. However, feeding highly correlated features to a machine learning model
in general does not improve performance but only increases input dimensionality and
thus computational cost. Hence, Occam’s Razor suggests we decide for an uncorrelated
subset of the features.

The only a priori indispensable feature is the magnetic flux density measurements, for
we are concerned with the bow shock and magnetopause crossings after all. Since it is
only available in MSO coordinates, our desired subset contains at least BX_MSO, BY_MSO
and BZ_MSO. Starting from there, we experimentally evaluate the performance of a small
MLP in rounds where one feature group at a time is included as additional input. We
train and evaluate these models only on 10% of the training and evaluation sets for time
considerations. Table 5.1 shows the results, reporting the overall accuracy and macro
F1 scores as defined in Section A.4, calculated over all individual time steps.

provided features macro F1 accuracy
B[X|Y|Z]_MSO 53.38% 71.00%
B[X|Y|Z]_MSO, [X|Y|Z]_MSO 67.71% 84.07%
B[X|Y|Z]_MSO, DB[X|Y|Z]_MSO 64.30% 81.32%
B[X|Y|Z]_MSO, [RHO|PHI|THETA]_DIPOLE 59.35% 76.32%
B[X|Y|Z]_MSO, RHO, RXY 56.81% 73.38%
B[X|Y|Z]_MSO, X, Y, Z, D 48.19% 65.34%
B[X|Y|Z]_MSO, V[X|Y|Z|ABS] 49.30% 67.42%
B[X|Y|Z]_MSO, COSALPHA 54.10% 71.30%

Table 5.1: Contribution of different feature groups to MLP performance.

We observe that the other two feature groups inMSO coordinates significantly improve
the model performance over the baseline of using just the magnetic flux density. All
remaining features do not have an equally great impact on model performance, chang-
ing the macro F1 by at most five percentage points in either direction. Since the MSO
spacecraft position achieves the largest margin, we include it into our subset of features
and repeat the process. The next round shows that none of the feature groups achieves
a noteworthy improvement except for the flux measurement error. Upon inclusion, it
bumps up the macro F1 to just over 72%, suggesting that we should add this feature
group aswell. We hence select {B[X|Y|Z]_MSO, [X|Y|Z]_MSO, DB[X|Y|Z]_MSO} as our final fea-
ture subset to train all further models on. Each having three spatial components, we get
d = 9 as input time step dimensionality for our model architectures.
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5.2 Architecture Comparison

The previous experiment fixes the input shape of our model architectures defined in
Section 4.2. As mentioned there, the presented architectures result from an architecture
search within each of the six categories MLP, CNN, FCNN, RNN, CRNN, and CANN.
An initial broad hyperparameter optimization with random search hinted at rough re-
gions of the parameter space to investigate further. In these regions, we continued to
optimize manually. We do not present results from this search phase since it is highly
iterative and training runs often only differ in a single detail.

Having a “worthy” representative of each category at hand, we finally compare their
classification performance on the evaluation set across the categories. To this end, we
employ the followingmetrics, discussed in Section A.4: Macro F1, overall accuracy, and
the class-wise accuracies for the critical bow shock and magnetopause classes, respec-
tively. Table 5.2 gives the results for all models, along with their respective number of
trainable parameters as an indicator of their size.

model macro F1 accuracy SK accur. MP accur. # params
MLP 74.73% 86.60% 73.87% 84.05% 245180
CNN 77.80% 89.29% 74.75% 84.62% 1413372
FCNN 78.97% 90.88% 78.83% 89.08% 1444796
RNN 79.93% 92.03% 81.50% 91.75% 237701
CRNN 81.21% 93.04% 79.22% 92.22% 267333
CANN 80.20% 92.46% 81.30% 92.23% 246469

Table 5.2: Comparison of the model architectures.

We are aware that, in machine learning, conducting a fair comparison is delicately hard.
For one, it is not even clear what “fair” is supposed to mean exactly. The simplest yard-
stick arguably is the number of trainable parameters in amodel, for it directly correlates
with its learning capacity. As Table 5.2 shows, we therefore kept aweather eye on ensur-
ing that the parameter numbers between most categories are similar enough to be com-
parable. Alas, the CNN and FCNN constitute an exception to this. The CNN inevitably
receives a high number of parameters from its final dense layer, and in preliminary ex-
periments the FCNN required relatively large channel sizes to perform reasonably.

Keeping that in mind, we now discuss the results. As expected, the baseline MLP
achieves the lowest performance. The CNN improves upon this, but at the cost of signif-
icantlymore parameters. Likewise, the FCNNmanages to go yet one better. Asmatches
the widespread experience in deep learning with time series, convolutions thus are a
beneficial component for our models. However, recurrent components seem to be even
more gainful, as the simple RNN architecture outperforms the previous three and even
has the highest bow shock accuracy. Hence, the CNN and FCNN gain no real benefit



28 Chapter 5. Experiments

from their capacity advantage. We see a clearmargin between the first and second triple
of models. Like we conjectured before, the combination of convolutional and recurrent
blocks leads to yet another improvement, although not by a large margin. The CRNN
achieves the highest overall scores and the highest magnetopause accuracy. Our ex-
perimental CANN accomplishes almost the same magnetopause performance but lags
slightly behind on the overallmetrics. Although theCANNachieves a higher bow shock
accuracy than the CRNN, we continue our experiments with the latter as it has the best
overall performance and is an established architecture.

5.3 Best Model Evaluation

With the CRNN found as the best model as measured by metrics over the evaluation
set, we now assess its “real” performance on the test set. Not that the test set did not
come into play before since it shall not influence the model development process. We
first evaluate the CRNN’s overall performance. Thenwe investigate the performance on
classifying the past time steps only and integrate the window classifications to conduct
inference on entire orbits. Finally, we isolate the future classification performance.

5.3.1 Overall Performance

To get a first impression, we recalculate the metrics we already used for the architecture
comparison in Section 5.2 on the test set. Table 5.3 compares them with the results on
the evaluation set.

set macro F1 accuracy SK accur. MP accur.
eval 81.21% 93.04% 79.22% 92.22%
test 81.95% 93.13% 79.93% 87.51%

Table 5.3: CRNN performance on the test versus evaluation set.

Remarkably, the overall performance on the test set slightly surpasses that on the eval-
uation set. However, the bow shock accuracy is almost equal and the magnetopause
accuracy significantly worse. This implies that the model performs better on the “eas-
ier” classes of interplanetary magnetic field, magnetosheath andmagnetosphere. Since
the architecture search proceeded on the evaluation set with special attention to the
crossing classes, it seems plausible that the resulting model relatively overfits on those.

For a deeper insight into the model’s classification behavior and the mistakes it makes,
we consider the confusion matrix as defined in Section A.4. However, since the dataset
contains a large number ofwindowed samples, in Figure 5.1 the absolute frequencies are
normalized to percentages that sumup to one. By and large, themodel getsmost classes
right. In particular, the two critical crossing classes are almost never confused for one
another. However, what also catches the eye is that about half of the time steps predicted
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Figure 5.1: Normalized confusion matrix for the CRNN.

as bow shock incidence, in fact, belong to the interplanetary magnetic field region. In
other words, the bow shock precision is pretty bad. Figure 5.2 highlights this more
by showing the confusion matrix normalized in a precision-oriented way, i.e., dividing
each column by its sum. In this vein, the diagonals contain exactly the precision values
for the respective class as defined in SectionA.4. Thanks to this different perspective, we
also notice that the model confuses a considerable share of magnetosheath time steps
with magnetopause crossings.

As precision is only one side of the coin, Figure 5.3 shows the analogous recall-oriented
confusion matrix obtained by dividing each row by its sum, so that the diagonal con-
tains the class recall scores as defined in Section A.4. Unfortunately, this is very often
referred to as the “normalized” confusion matrix, although it is not the true normal-
ized matrix. We find this terminology utterly confusing5 and hence strictly distinguish
between the normalized, the precision-oriented and the recall-oriented confusion matrix.
Besides being confusing, reporting only the recall-oriented matrix can be misleading.
In our case, for instance, it looks far better than the precision-oriented one. With 80%,
the worst recall score for bow shock is quite acceptable. By looking at the whole picture,
we nevertheless know that precision is not.

5Actually, this pun was unintended.



30 Chapter 5. Experiments

IM
F

SK M
Sh

M
P

M
Sp

predicted class

IMF

SK

MSh

MP

MSp

tr
ue

cl
as

s
0.99 0.41 0.016 0.00044 0

0.0055 0.42 0.032 0.00076 1.2e-07

0.00079 0.17 0.94 0.24 0.00042

4.4e-06 0.00015 0.016 0.6 0.0063

0 8.7e-07 0.00051 0.16 0.99

0.0

0.2

0.4

0.6

0.8

Figure 5.2: Precision-oriented confusion matrix for the CRNN.
Each columns sums up to one.
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Figure 5.3: Recall-oriented confusion matrix for the CRNN.
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Our results so far show that the CRNN’s performance on themagnetopause crossings is
considerably better than on the bow shock crossings. We analyze this further by plotting
precision-recall curves (PRC) for the two classes. A PRC for a class results from binarizing
the classification task as “this class versus the rest”, which means the probability out-
puts of the model for the other classes are summed together. Now, we could say that
the model’s decision for the class in question is positive if its respective probability is
greater than 0.5. However, this threshold value is notmandatory. In fact, we can declare
any value between zero and one as the decision threshold. Hereby, the precision and
recall metrics will change in opposite directions. If the threshold increases, it is harder
to hit this class, so precision will increase, but recall will decrease. By calculating pre-
cision and recall for many different threshold values in [0, 1] and plotting the image of
the resulting parametric curve, the PRCs in Figure 5.4 emerge. They display the tradeoff
between precision and recall.
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Figure 5.4: Precision-recall curves for the bow shock and magnetopause classes.

The PRCs again confirm our repeated observation that the model systematically han-
dles the magnetopause class better. Regardless the threshold, the magnetopause curve
is well above the bow shock curve. In case you are wondering about the sudden jumps
in the beginning of the SK PRC: This happenswhenever the decision threshold becomes
so high that no true positives exist, but recall is still positive. Once recall becomes zero
as well, the curve jumps to one due to the convention of 0

0 := 1. This artifact not ap-
pearing in the MP PRC is yet another indicator that the model is more confident on the
magnetopause crossings.
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5.3.2 Past-only Performance

In the previous Section 5.3.1, we evaluated the CRNN model using its entire output,
i.e., class probabilities for the window time steps and future steps. In the following, we
chop off the future predictions and repeat the entire evaluation machinery on the test
set with the past time steps only. Table 5.4 shows the overall metrics on the test set and
Figures 5.5, 5.6 and 5.7 provide the normalized, precision-oriented and recall-oriented
confusion matrices, respectively.

macro F1 accuracy SK accur. MP accur.
82.00% 93.09% 79.64% 87.77%

Table 5.4: CRNN past classification performance on the test set.

Wewould expect themodel to do slightly better on the past classification as compared to
the entire “past+future” prediction. While this difference indeed turns up, it is almost
negligible, and the bow shock accuracy of past-only classification is, in fact, a bit worse.
Thus, wemay say that the total performance is essentially equal. The confusionmatrices
support this conclusion, being almost identical to the ones in the previous subsection.
Their lower left corners imply that the past-only part of the model does not confuse
magnetopause nor magnetosphere with interplanetary magnetic field or bow shock.
Furthermore, we observe that the class precision for magnetopause is a bit better and
for bow shock a bit worse, matching the accuracy observation.
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Figure 5.5: Normalized confusion matrix for the CRNN’s past classifications.
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Each column sums up to one.

IM
F

SK M
Sh

M
P

M
Sp

predicted class

IMF

SK

MSh

MP

MSp

tr
ue

cl
as

s

0.95 0.044 0.0032 3.5e-05 0

0.093 0.8 0.11 0.00045 3.6e-06

0.005 0.097 0.84 0.053 0.00073

0 0 0.089 0.88 0.033

0 0 0.00083 0.038 0.96

0.0

0.2

0.4

0.6

0.8

Figure 5.7: Recall-oriented confusion matrix for the CRNN’s past classifications.
Each row sums up to one.
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So far, our evaluation attested good recall scores on the bow shock and magnetopause
crossings but lousy precision scores, suggesting that themodel is overconfident on these
classes. We now want to confirm this insight gained from quantitative analysis with a
qualitative inspection. To this end, we utilize the model’s past-only classifications in a
window to infer predictions for an entire orbit.

Given any orbit’s measurements, we generate windows of the same size w used for
training the model with Algorithm 4.1. Then, we let the model classify all time steps in
each window. In this manner, almost every time step of the underlying orbit receives
distinct predictions from w different windows in which it is contained. The exception
are the first w − 1 time steps of the orbit, which do not have a sufficiently long past. To
integrate the predictions for a single time step, we average the w different probabilities
for each of the five classes, again yielding probabilities that sum up to one. Finally, a
softmax on the integrated probability distribution gives a class prediction for the time
step. We do this for all orbits in the test set and plot their magnetic flux density along
with the predictions.6

We visually inspected each of the 316 orbits in the test set. The model mostly predicts
contiguous magnetic regions and almost always in the correct order. Nevertheless, we
identify four major qualitative issues:

• Crossing Overconfidence: On virtually all orbits, the extent of the model’s predicted
crossings is too large. Like in Figure 5.8, the model predicts the bow shock and
magnetopause regions to be wider than they actually are. Particularly the pre-
dicted bow shock crossings tend to steal from the neighboring regions. Undercon-
fidence, on the other hand, rarely happens, matching our quantitative analysis.

• Scattered SK crossings: In addition to being too wide, bow shock crossings are fre-
quently torn apart into several crossings like in Figure 5.9. Themodel seems rather
sensitive to relative changes in the magnetic flux.

• Scattered MP crossings: Analogous to bow shock crossings, magnetopause cross-
ings are also sometimes dispersed into separate ones like in Figure 5.10. However,
this happens significantly less often than with bow shock crossings, matching our
finding that magnetopause performance is generally better.

• Random MSh spikes: Very rarely, the model hallucinates small magnetosheath re-
gions in unexpected places like in Figure 5.11.

On a handful of orbits, like that in Figure 5.12, all of the above problems appear at the
same time. For future work to tackle these challenges, we propose some countermea-
sures in Chapter 6. In conclusion, we confirmed what the quantitative metrics sug-
gested, and additionally gained more insight through visual inspection.

6All plots for the entire test set reside in the code repository accompanying this work, see Chapter 1.
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Figure 5.8: Inference on an orbit where predictions are overconfident on crossings.
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Figure 5.9: Inference on an orbit where predictions scatter a bow shock crossing.
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Figure 5.10: Inference on an orbit where predictions scatter a magnetopause crossing.
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Figure 5.11: Inference on an orbit with additional predicted magnetosheath regions.
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Figure 5.12: Inference on an orbit where predictions are utterly broken.



40 Chapter 5. Experiments

5.3.3 Future-only Performance

Analogous to the past classification, we now focus on the future classification perfor-
mance of the CRNN by chopping off the predictions for the time steps contained in a
window. This is particularly interesting since the model has no corresponding input for
the future time steps. Table 5.5 again shows the summarymetrics and Figures 5.13, 5.14
and 5.15 the confusion matrices.

macro F1 accuracy SK accur. MP accur.
81.35% 92.78% 78.05% 86.44%

Table 5.5: CRNN future classification performance on the test set.

Based on our insights about past classification in the previous subsection, we now ex-
pect the future classification performance to behave complementarily. After all, the set
of all predictions is precisely the disjoint union of all past and future predictions. In-
deed, comparing Figure 5.14 with Figure 5.6 yields that precision on bow shock cross-
ings is a bit lower for future classifications. Furthermore, Figures 5.15 and 5.7 show that
recall for future classification is slightly worse on both classes. However, these differ-
ences are minor, and besides that, future-only predictions seem to behave essentially
the same as past-only classifications. We suspect that this negligible difference arises
from the model simply predicting the same class for all future time steps as it did for
the rear time steps within a window since this heuristic is correct for almost all samples.
In Chapter 6, we thus propose a different task definition for future work.
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Figure 5.13: Normalized confusion matrix for the CRNN’s future classifications.
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Figure 5.14: Precision-oriented confusion matrix for the CRNN’s future classifications.
Each column sums up to one.
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5.4 Active Learning

After extensive evaluation of the CRNNmodel obtained by passive learning, we finally
incorporate our active learning approach from Section 4.3. In particular, we run Al-
gorithm 4.2 with two different choices for the increment function: one leading to an
exponentially growing training set and one leading to a linearly growing training set.
In thismanner, we explore how the classification performance scaleswith available data
and determine the order of magnitude of orbits required for a satisfactory model.

5.4.1 Linear Increment

To get a rough overview of the active learning dynamics, we run a preliminary active
learning experiment with the increment function defined by ⮝(n) := max{1, n}. This
definition doubles the training set size in each iteration, ensuring an equal proportion
between “old” and “new” orbits. Figure 5.16 plots our four evaluationmetrics also used
in the previous sections over time, i.e., against the number of already included orbits.
It essentially constitutes a learning curve for the model.
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Figure 5.16: Active learning curve with exponentially growing training set.

We observe a rapid increase of all metrics in the beginning, followed by a longer period
of flattening. The performance after having used all orbits is comparable to the passively
trainedmodel, but slightly worse. We suspect overfitting during the first iterations to be
the culprit. Especially the very first iteration on only one orbit lasted for amultiple of the
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gradient descent epochs we usually observed in passive training. With more iterations,
the epoch number until early stopping decreased constantly. This might imply that the
active learner homed in on the first orbits it received and afterward only occasionally
learned something new. From Figure 5.16, we may tentatively derive an upper bound
of around a thousand orbits on our desired quantity of orbits needed for satisfactory
performance. Beyond this number, not much happens anymore.

5.4.2 Constant Increment

To get a more fine-grained development of the model’s performance over time, we con-
duct our main experiment with a linearly growing training set, where a constant num-
ber of orbits enters the training set each iteration. Intuitively, one would simply want
to add orbits one by one. However, there are two drawbacks to this approach. Firstly,
adding a single orbit in each iteration will cause over 2000 iterations to take place in
total, which makes the experiment last infeasibly long. Secondly, as we observed in the
exponential approach, with too few orbits overfitting is a huge problem for the active
learning scheme. As a reasonable choice, we thus increase the training set by ten orbits
in each epoch, according to⮝(n) := 10. Figure 5.17 shows the resulting learning curve.
We are only able to present the results for the first 1000 orbits since the experiment has
only proceeded this far up to now. Nevertheless, its evolution is clearly evident from
the first half of the experiment.
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Figure 5.17: Active learning curve with linearly growing training set.
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Like in the exponential setting, we observe a rapid performance increase in the begin-
ning. However, this time the metrics seem to hit the ceiling after 100 orbits already and
then continue to increase only marginally. After around 500 orbits, the class accura-
cies for bow shock and magnetopause even begin to decrease, while the overall metrics
go further up. This divergence implies that the model focuses more on the majority
classes and increasingly ignores the two we are concerned with. As a result, the per-
formance after having trained on half of all orbits is essentially equal to the passively
trained model in terms of macro F1. However, the class-wise accuracies are consider-
ably worse, in particular, worse than was the case with a linear increment.

We suspect the constant increment of causing this mediocre development. Since the
number of orbits added in each iteration does not depend on the number of already seen
orbits, their relative proportion becomes more and more skewed towards the known
orbits. Consequently, the model decreasingly learns new things but keeps optimizing
over known orbits repeatedly. In this regard, the linear increment is superior since it
ensures a constant proportion of “new” vs. “old”. For future experimentation, we thus
propose to employ an exponential schedule but with a smaller base so that orbits are
not added too quickly. Furthermore, in the beginning, orbits should be added in groups
of a specific minimum size. For instance, a choice of ⮝(n) := max{10, bn4 c} seems rea-
sonable as it ensures that a fifth of the current training set consists of unseen orbits and
yet allows fine-grained investigation of the lower end of the training set size spectrum
like the constant increment does.

A straightforward approach to avoid overlearning would be retraining the model from
scratch instead of reusing the previous parameters. In this vein, the model simply starts
fresh in each iteration. However, this sledgehammer solution does not come without
drawbacks: Firstly, it increases the training time even further since the model cannot
profit from parameters that already are in a suitable region of parameter space. Sec-
ondly, it conforms less to the pure concept of an active learner incrementally increasing
its knowledge but as it repeatedly resets the learner’s memory and gives it increasingly
more to learn at once. Instead, as a less extreme remedy we propose applying a slight
random noise to the model’s parameters before each retraining step. This might keep
the model from forever following the same descent path in the loss landscape it entered
during the first iterations but still preserves the majority of what the model has already
learned.

Despite themediocre absolute performance, wemay still infer an answer to our question
based on the relative development. The crossing performance continues to increase
until just under 500 orbits form the training set. While the crossing accuracies do not
reach the performance of the passively trained model at this point, the overall accuracy
and macro F1 do. It is thus worth investigating the surrounding region more closely.
We do this by taking into account further aspects of the active learning process.
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Besides the performance metrics, we can also consider the model’s orbit uncertainty as
defined in Section 4.3. After all, it is the very measure by which orbits are selected for
training in the active learning scheme and indicates themodel’s confidence about its de-
cisions. We are interested in the point from which on uncertainty does not significantly
decrease anymore, meaning that the model has nearly saturated its learning capabili-
ties. In a sense, the model has “seen enough” until that point. To this end, Figure 5.18
plots the worst occurring orbit uncertainty at each iteration as a function of the number
of orbits included in the process.
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Figure 5.18: Worst orbit uncertainty development with a linearly growing training set.

In the beginning, the orbit uncertainty starts off with its global maximum of just under
log(5) ≈ 1.609, which according to Section A.1 is the entropy of a uniform distribution
on five outcomes. This is not a coincidence but results from the definition of our orbit
uncertainty measure in Section 4.3 and the model’s random parameter initialization.
For illustration, the prediction with highest entropy for a single time step in the first
iteration was

[0.201, 0.208, 0.187, 0.207, 0.197],

being indeed very close to a uniform distribution. Remarkably, the orbit uncertainty
remains on this high level for two more iterations, i.e., until 30 orbits are in the training
set, while the performance metrics in Figure 5.17 improve significantly. This implies
that in these iterations, the output probabilities did not depart from the equilibrium
but merely rearranged themselves such that their maximum is at the correct position.
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After its initial plateau, the orbit uncertainty decreases rapidly from the fourth iteration
onwards. Analogously to the performance metrics in Figure 5.17, the uncertainty even-
tually flattens out and seems to almost asymptotically approach a value of 0.5. Again,
the lion’s share of improvement happens during the first half until about 500 orbits
are included. We provide further evidence for this claim by considering not only the
worst overall orbit uncertainty. Like we did as an example for the first iteration, we
also consider the worst uncertainty/entropy of a single time step prediction in an itera-
tion. Figure 5.19 plots these worst entropies, again as a function of the training set size.
While there are iterationswith an outlier, theworst-case entropy decreases steadily until
around 450 orbits are included. Afterward, the worst case does not improve.
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Figure 5.19: Worst single time step entropy with a linearly growing training set.

Taking all insights together, we conclude that the model’s learning capacity saturates
after 450 to 500 orbits. This constitutes a new upper bound for the number of orbits
required for a representative model. When summing the duration spanned by the con-
crete orbits chosen by the model, this equates to roughly two full Mercury years’ worth
of MESSENGER orbits. We may therefore claim that twoMercury years make for a suf-
ficient set of observations for the model to learn from. On the other hand, revisiting
Figures 5.17, 5.18 and 5.19 suggests that one complete Mercury year (around 230 orbits
in this case) is at least required. Hence, it remains for future work to explore the range
in between. With the improvements we proposed before and summarize in Chapter 6,
it might even be possible to lower this bound to just one Mercury year.



Chapter

Conclusion 6
In this work, we built a discriminative end-to-end deep learning model for detecting
Mercury’s bow shock and magnetopause crossing signatures based on raw measure-
ments from NASA’s MESSENGER mission. Moreover, we devised an active learning
scheme to address the question of how many orbits’ worth of measurement data is re-
quired for a representative model.

To this end, we formulated a machine learning task that, given a window of measure-
ments, consists in predicting one of five magnetic regions for each time step in the win-
dow and even classifying several future time steps for which no measurements are pro-
vided. For this task, we devised six different neural network architectures and com-
pared these empirically. We found that convolutional layers, performing feature extrac-
tion, followed by either recurrent (CRNN) or attention layers (CANN), addressing the
temporal aspect of the data, are well suited to the task. Our best model, the CRNN,
achieves a macro F1 of about 82% and manages to detect the crossings with reason-
able accuracy, with the magnetopause classification performance consistently surpass-
ing that of the bow shock class. In particular, the recall scores of 78% for bow shock and
86% for magnetopause are convincing. However, the model, in turn, lacks appropri-
ate precision, which is 39%, and 61%, respectively. This implies severe overconfidence,
especially on bow shock crossings. We qualitatively confirm by visual inspection that
indeed the predicted crossings are almost always too wide. Furthermore, we find that a
crossing is frequently predicted as multiple successive ones, and sometimes unwanted
artifacts of magnetosheath appear.

Based on the best model, we approached the central question underlying this workwith
an active learning scheme. It employs the uncertainty sampling strategy with a custom
orbit-level measure based on Shannon entropy, by which we iteratively determine the
next orbits to include in the training set. After a preliminary experiment with an ex-
ponentially growing training set, we conducted our main experiment with a constant
increment of ten orbits per iteration. Its mediocre results imply that a constant incre-
ment is inferior to a linear one, for the latter ensures a constant portion of unseen orbits
throughout all iterations. Furthermore, both increment strategies suffer from overfit-
ting on the very first orbits included in the process. Nevertheless, wewere able to derive
that at least one and at most two Mercury years’ worth of measurement data may be
sufficient for a representative model that achieves satisfactory performance.
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While our work yields comprehensive insights into the structure of the MESSENGER
magnetometer data and hence the magnetic dynamics aroundMercury, it can only pro-
vide a starting point. We point out possible improvements and further directions for
future work to address in the following paragraphs.

A data-driven approach can only get as good as the underlying data is. Therefore, we
propose to improve the dataset itself. As we discussed, the annotations from Philpott et
al. have a major drawback: Whenever multiple successive crossings indeed occurred,
they were combined into a single large crossing. Besides distorting reality, this might
well be one cause for the crossing overconfidence of our final model since it was taught
to also detect regions as crossing that, in fact, were none. As a heuristic countermeasure,
future efforts should at least remove orbits with suspiciously long crossing annotations.
However, it would be best to strive for new high-quality annotations as a gold standard
for the MESSENGERmagnetometer data. As shown, it will not be necessary to label all
4000 orbits, but only two entire Mercury years and optimally a third one for evaluation
and testing. In fact, our algorithm can bemodified for reannotatingwith active learning
by inserting the human annotator into the loop. Finally, we suggest augmenting the
dataset with meta-fields that for each time step indicate the Mercury year and orbit
numberwithin thisMercury year. In this vein, it becomes feasible to investigatewhether
an active learner indeed chooses orbits of different seasons within a Mercury year, as
would seem plausible for it to gain maximum information.

Another future direction concerns the machine learning task formulation. We suspect
that our definition in Section 4.1 might be too ambitious since it comprises the clas-
sification of each time step within a window individually. Instead, it suffices to let the
model predict only a class for the window’s ultimate “present” time step. For inference,
this would result in one prediction for each time step instead of multiple votes. Like-
wise, the future classification output may be compressed to a single value. For instance,
this could be a binary flag indicating whether the class predicted for the present time
step changes in the near future. Pruning the task definition from sequence-to-sequence
to sequence-to-pair would simplify model architectures and possibly improve perfor-
mance. The extreme would be dividing the combined past and future classification
into separate tasks altogether. Regarding the format of a class prediction, we see two
possible improvements: Firstly, to tackle the model’s overconfidence on the crossings, it
might help to apply label smoothing [MKH19], i.e., not using a hard one-hot vector as the
target but a slightly softened version. Secondly, one might entirely discard the categor-
ical target, as it ignores the magnetic regions’ topology. To capture their neighborhood
relationships, we propose an experimental formulation of the prediction target on a unit
circle in two-dimensional space. Particularly, the region labels could be the fifth roots
of unity in the complex plane. An additional penalty term in the loss function could
then incentivize the model’s predictions to have a norm close to one.
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On the modeling front, there remains an inexhaustible pool of possibilities to explore,
of which we only name a few. To begin with, the CANN architecture should be investi-
gated further since its results were comparable to the CRNN in our study. Beyond, ad-
ditional model architectures likeResNet [He+16] or the Time Series Transformer [Zer+21]
could be employed. In general, we expect any significantly larger model with regular-
ization mechanisms like a parameter norm penalty, dropout [Sri+14], or batch normal-
ization [IS15] to improve on our results in absolute terms. Ourmodelswere deliberately
chosen small to reduce computational cost so that they did not require regularization
but, on the contrary, might lack learning capability. Overall, a comprehensive ablation
study of architectures is a to-do for future work. In particular, the contribution of the
future classification part should be investigated. As a technical detail, we figure that
employing dilated convolutions [YK16] might benefit absolute performance as well since
they exponentially expand the receptive field of deeper neurons. Moreover, provided
that the learning task continues to consist of combined past and future classification,
the model might profit from eventually diverging representations for the two subtasks
instead of sharing the same representations until the output layer. For example, in later
layers, the model could branch off into two subnetworks.

Just as the possibilities for modeling are unlimited, so are those for training techniques.
Firstly, instead of the Adam optimizer employed in our work, it is advisable to experi-
ment with different options such as vanilla stochastic gradient descent or AdamWas no
optimizer is fundamentally superior [Wil+17]. Secondly, even with adaptive optimiz-
ers like Adam, practitioners observed improvements by using learning rate schedules
[Smi18]. This opens yet another Pandora’s box, since the concrete scheduling possi-
bilities are infinite. Usually, a simple linear day or a cyclic schedule with sawtooth or
sinusoidal waveform is used. Thirdly, the inherent under-representation of the cross-
ings may be handled in different ways. We accounted for the class imbalance by ac-
cordingly weighting the categorical cross-entropy loss function. It could be worth ex-
perimenting with the more sophisticated focal loss [Lin+17] that is successful in object
recognition tasks. Instead of adjusting the loss, it might be even more beneficial to just
under-sample themajority classes, particularly the interplanetarymagnetic field region.
Hereby, the class imbalance is removed on data level. However, doing this before each
training epoch comes with an immense computational cost.

Ultimately, the active learning approach devised in this work is not set in stone. Firstly,
we followed an uncertainty sampling strategy for its computational efficiency. Never-
theless, future research should explore other methods like query-by-committee or es-
timated error reduction. The latter might be implemented efficiently by using a loss
prediction module [YK19] instead of actually calculating the expected loss. Secondly, our
experiments highlight the importance of a practically constant proportion between seen
and unseen orbits during the active learning process. As we outlined in Section 5.4, a
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linear increment that leads to an exponential training set growth with a small basis
seems promising. Thirdly, the issue of the active learner overfitting individual orbits
during the first iterations needs to be addressed. As we discussed, this might be done
by simply requiring a fixed lower bound of the increment function. Furthermore, over-
fitting could, in part, result from the model capacity being too large in relation to the
training set during the first iterations. As a countermeasure, one could regularize the
model with dropout [Sri+14] of rate inversely proportional to the training set size. In
this vein, the model capacity effectively grows dynamically with the number of itera-
tions, preventing the first included orbits from already affecting all parameters. The
ensemble effect of dropout might benefit the active learning process even further.

By and large, this work reveals two insights on a broader level: Firstly, deep learning
can be considered a suitable technique for modeling the magnetodynamics of Mercury.
Secondly, active learning serves not only for enhancing labeling efficiency but also for
addressing data representativeness questions. We strongly encourage future work to
continue and improve our study, taking note of the suggestions made above. The out-
comesmight become relevant for the upcomingMercurymission BepiColombo [Ben+10]
by ESA and JAXA, who dispatched two space probes to presumably arrive at Mercury
in December 2025.



Appendix

Deep Learning A
Not all computational tasks can be solved with traditional deterministic algorithms in
a straightforward way. As an example, consider handwritten digit recognition. How
should an exact algorithm for deciding the identity of a given digit look like? What
would its rules be based on? Where would it put the boundary between a one and a
seven? How would it handle different viewing angles, lighting conditions and all sorts
of ugly handwriting? It remains entirely unclear how to explicitly instruct a computer
to accomplish an ambitious task like this.

A possible workaround is to loosen the explicitness and determinism requirements,
which leads us to the field of supervised machine learning: Let X ⊆ Rn be the domain
and Y ⊆ Rd the co-domain of the idealized task f : X → Y . Instead of solving it head-
onwith an algorithm, whichwould require its designer to possess universal knowledge
of the underlying laws, we let the computer learn a procedure like children do – from a
plethora of examples! To this end, we require a dataset

D = {(x, f(x)) | x ∈ X ′} ⊆ X × Y X ′ ⊆ X finite

of known samples x and their corresponding labels f(x). Using a model f̂θ : X → Y
depending on trainable parameters θ from a parameter spaceΘ ⊆ Rm, our goal is then to
approximate the target function f as close as possible, i.e., f̂θ ≈ f .

In order to establish a complete machine learning system, we furthermore need

• A loss function LD : Θ→ R that measures the approximation quality of f̂θ,

• an optimization procedure that finds optimal values for the parameters θ,

• an architecture that specifies the internal structure of the model f̂θ, and

• meaningful metrics for evaluating the practical generalization capability of f̂θ.

We address each of these ingredients one by one. Section A.1 establishes the funda-
mentals of information theory to arrive at a bullet-proof loss function. Section A.2 then
elaborates on how this loss can be used to build an algorithm that updates the parame-
ters θ toward better values. Section A.3 provides insight into the concrete architecture
defining f̂θ in modern deep learning models. Section A.4 completes the journey with
an overview of the most important evaluation metrics in practice.
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A.1 Information Theory

To derive a proper loss function for our machine learning system, we take a stochastic
perspective: Let (Ω,A,P) be a probability space and (x,y) : Ω → Rn × Rd a random
vector describing the data distribution in D. Then we can think of the model f̂θ as real-
izing for each x ∈ X a conditional distribution P[ŷθ = · | x = x] over a random vector
ŷθ : Ω → Rd depending on the model parameters. Optimally, the model’s distribution
should match the data distribution as close as possible, i.e., for all (x,y) ∈ D we desire
P[ŷθ = y | x = x] ≈ P[y = y | x = x]. One adequate measure of dissimilarity between
the model and the data distribution stems from the field of information theory, which
is mainly concerned with data transmission and encoding. First formalized by Claude
Shannon [Sha48], it centers around quantifying the concept of information.

A.1.1 Measuring Uncertainty

Imagine a weather station that periodically transmits the current weather conditions
over a digital communication channel. If the station happens to be in a region where it
is sunny 99% of the time, and the chance of rain is only 1%, how surprisedwould you be
when the station transmitted “Tomorrow will be a sunny day.”? Not much. However,
if the message were “Tomorrow it will rain.”, you would. The less likely an event is,
the more surprising it is and the more new information it yields. This consideration
motivates a quantitative measure of information for events in random processes.

Definition 1 (Information amount). Let x : Ω → Rd be a finitely supported random
vector. The information amount Ix : supp(x)→ R with respect to x is defined7 as

Ix(x) := − log(P[x = x]) = log 1

P[x = x]
.

While its inverse proportionality to an event’s probability is clear from the discussion
above, the appearance of a logarithm might be – well – surprising. We will later see
that log earns its place for deeper mathematical reasons. For now, we motivate it with
the weather station example: Suppose it is in a region where the sun shines 50% of
the time and chances of rain and snow are 25%, respectively. If we wanted to find
an optimal binary encoding for the status message to be transmitted, coding theory
suggests we choose 0 for “sunny”, 10 for “rainy” and 11 for “snowy”. Observe now that
when substituting the binary logarithm in Definition 1 above, the information content
of a weather condition equals precisely the number of bits we need for encoding it in
the optimal code. So we may think of Ix(x) as the encoded length of x in an optimized
code. In addition to this interpretation, the logarithm allows for a desirable algebraic
property to hold.

7Note that Ix is well-defined due to the definition of supp(x) := {x ∈ Rd | P[x = x] > 0}.
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Lemma 1 (Independent Additivity). For two independent discrete random variables
x,y : Ω→ R, the following addition law holds:

I(x,y)(x, y) = Ix(x) + Iy(y). (A.1)

Proof. The law follows from the definition of stochastic independence:

I(x,y)(x, y) = − log(P[(x,y) = (x, y)])

= − log(P[x = x,y = y])

= − log(P[x = x] · P[y = y])

= − log(P[x = x])− log(P[y = y])

= Ix(x) + Iy(y)

In other words: Independent information sums up. This is exactly what we expect from
an intuitive measure of information. So far, we are only able to quantify the information
contained in a single event. A reasonable extension to entire distributions would be the
expected information across all outcomes. And indeed, this is the central definition of
information theory.

Definition 2 (Shannon Entropy8). Let x : Ω → Rd be a finitely supported random
vector. We define the entropy of x as

H(x) := E[Ix(x)] = −
∑

x∈supp(x)
P[x = x] log(P[x = x]).

Being the average amount of information, we can also interpret entropy as a measure of
uncertainty in a distribution, i.e., how surprised we are on average when drawing from
that distribution. Furthermore, one might think of it as the average message length in
an optimal code for the outcomes. Despite the definition’s conceptual simplicity, we
should allow ourselves some illustrative examples.

Example 1 (Entropies of Common Distributions).

(a) Bernoulli: The entropy of xp ∼ B(1, p), for p ∈ [0, 1] is called the binary entropy
function:

H(xp) = −p log(p)− (1− p) log(1− p)

Figure A.1 plots this as a function of the success probability p.

(b) The entropy of the uniformly distributed variable yn ∼ U({1, . . . , n}) for n ∈ N is

H(yn) = −n 1
n log( 1n) = log(n).

8From greek en ∼= in and trope ∼= turning, translatable as “self-transformation”.
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Figure A.1: Left: Entropy of Bernoulli variables with respect to success probability as in
Example 1 Right: Its derivative approaching infinity at the boundaries.

The second example suggests that entropy might stand in a deeper relationship with
uniform distributions. As we will see shortly, this is quite the case. Before that, we shall
gather crucial properties of this fundamental information measure.

Theorem 1 (Properties of Entropy). Let x,y : Ω → R be finitely supported random
variables on a probability space (Ω,A,P). We observe the following properties:

(a) Non-Negativity: H(x) ≥ 0.

(b) Minima at Dirac Distributions: H(x) is minimal iff x ∼ δ(x) follows a Dirac distri-
bution with supp(x) = {x}.

(c) Maxima at Uniform Distributions: H(x) is maximal iff x ∼ U(supp(x)) is uniformly
distributed.

(d) Independent Additivity: If x and y are independent, then

H((x,y)) = H(x) +H(y).

(e) Uniform Monotonicity: For uniformly distributed variables x ∼ U(supp(x)) and
y ∼ U(supp(y)) with | supp(x)| ≤ | supp(y)|, we have H(x) ≤ H(y).
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Proof.

“(a)” The non-negativity follows immediately from the definition:

H(x) = −
∑

x∈supp(x)
P[x = x]︸ ︷︷ ︸

≥0

log(P[x = x])︸ ︷︷ ︸
≤1︸ ︷︷ ︸

≤0︸ ︷︷ ︸
≤0

≥ 0

“(b)” According to (a), the minimum must be at least zero. Considering

H(x) = −
∑

x∈supp(x)
P[x = x] log(P[x = x])

!
= 0

requires by non-negativity that all summands vanish. Thus, for each x ∈ supp(x)
either P[x = x] = 0 or P[x = x] = 1, so x is a Dirac variable.

“(c)” Write supp(x) = {x1, . . . , xn} and let pi := P[x = xi]. To findmaxima, we consider
the Lagrange function

L(p1, . . . , pn, λ) := −
n∑

i=1

pi log(pi) + λ

 n∑
i=1

pi − 1


Annulling the partial derivatives with respect to the probabilities

∂L

∂pi
(p1, . . . , pn, λ) = −1− log(pi) + λ

!
= 0

requires pi = eλ−1 for each i, so all pi are equal. Using this in the constraint

∂L

∂λ
(p1, . . . , pn, λ) =

n∑
i=1

pi − 1
!
= 0

yields npi = 1, so pi =
1
n for all i. Sufficiency is left as an exercise for the reader.

“(d)” The additivity of entropy follows from Lemma 1 and the linearity of expectation:

H((x,y)) = E[I(x,y)((x,y))]
A.1
= E[Ix(x) + Iy(y)]
= E[Ix(x)] + E[Iy(y)]
= H(x) +H(y)

“(e)” The uniform monotonicity follows from that of logarithms and Example 1b:

H(x) = log | supp(x)| ≤ log | supp(y)| = H(y)
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So, entropy has several properties that render it a useful measure of information or un-
certainty. But aren’t there also other functions satisfying these properties? Preferably
functions without a bizarre log expression in it? To answer this question, we approach
it axiomatically. Since information theory deals with finitely supported random vari-
ables, we reformulate the problem without loss of generality as finding an uncertainty
measure Hn : 4n−1 → R on the standard n-simplex

4n−1 := {(p1, p2, . . . , pn) ∈ Rn | ∀i : pi ≥ 0,
n∑

i=1

pi = 1} ⊆ [0, 1]n (A.2)

with the following properties that we consider as fundamental:

(U1) Continuity: It does not appear reasonable that a measure of uncertainty change
abruptly upon small changes to the distribution. Hence we demand:

Hn is continuous on the interior of4n−1.

(U2) UniformMonotonicity: If a uniform distribution hasmore outcomes than another
uniform distribution, it effectively containsmore choices and hencemore uncer-
tainty. Thus, H should be monotonic with respect to n ∈ N in this case:

Hn(
1
n , . . . ,

1
n) ≤ Hn+1(

1
n+1 , . . . ,

1
n+1).

(U3) Decomposability: For any partition {p1, . . . , pn} = G1 ∪· . . . ∪· Gk ⊆ [0, 1] of the
distribution (p1, . . . , pn) ∈ 4n−1 into disjoint groups Gi = {gi1, . . . , gini} with
group probabilities qi :=

∑ni
j=1 gij , we can decompose H as

Hn(p1, . . . , pn) = Hk(q1, . . . , qk) + qi

k∑
i=1

Hni(
gi1
qi
, . . . ,

gini
qi

).

Figure A.2 illustrates the intuitive meaning: When dividing a distribution into
two successive ones, where the second is conditioned on the first, the overall un-
certainty value should be the sum of the individual distributions’ uncertainties.
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Figure A.2: Decomposition of a distribution over three probabilities.



A.1. Information Theory 57

Requiring only these three basic properties of an uncertainty measure allows us to an-
swer the question. Remarkably, it turns out that the Shannon entropy has a unique
selling point with the uncertainty properties up to a constant.

Theorem 2 (Uniqueness of Entropy). If Hn : 4n−1 → R satisfies the uncertainty
axioms (U1), (U2) and (U3), then there is a non-negative constant K ∈ R≥0 such that

Hn(p1, . . . , pn) = −K
n∑

i=1

pi log(pi).

Proof. We follow Shannon’s original proof [Sha48]. A more formal yet less clear proof
is given by Chinčin [Chi70]. For brevity, set H̃(k) := Hk(

1
k , . . . ,

1
k ). Suppose we have a

uniform distribution of an outcomes for some a, n ∈ N≥1. Using (U3), we can decom-
pose its uncertainty by grouping a outcomes together n times in a row:

H̃(an) = H̃(an−1) + H̃(a) = · · · = nH̃(a).

This exponent-hopping should look familiar. Now let b ∈ N≥2 be arbitrary but fixed.
For each choice of a and n, we find m ∈ N≥0 such that

bm ≤ an < bm+1.

Logarithms are monotone and thus preserve the inequalities:

m log(b) ≤ n log(a) < (m+1) log(b) =⇒ m

n
≤ log(a)

log(b) <
m

n
+
1

n
=⇒

∣∣∣∣ log(a)
log(b) −

m

n

∣∣∣∣ < 1

n

But H̃ is monotone just as well from (U2), so we get:

mH̃(b) ≤ nH̃(a) < (m+ 1)H̃(b) =⇒ m

n
≤ H̃(a)

H̃(b)
<

m

n
+

1

n
=⇒

∣∣∣∣∣H̃(a)

H̃(b)
− m

n

∣∣∣∣∣ < 1

n

Combining the two results and using the triangle inequality gives in the limit∣∣∣∣∣H̃(a)

H̃(b)
− log(a)

log(b)

∣∣∣∣∣ ≤ 2

n

n→∞−−−→ 0 =⇒ H̃(a) =
H̃(b)

log(b)︸ ︷︷ ︸
=:K

log(a) = −K log
(
1

a

)

with K ≥ 0 to satisfy the monotonicity (U2). Now, consider a distribution of n out-
comes with rational probabilities (p1, . . . , pn) ∈ 4n−1. By extending to a common de-
nominator, we can assume without loss of generality that pi = ni

Σni
with integers ni ∈ N

and Σni :=
∑n

i=1 ni. Using (U3) again, we can decompose the uncertainty by forming
n groups of ni equally probable outcomes with total probability pi:

H̃(Σni) = Hn(p1, . . . , pn) +
n∑

i=1

piH̃(ni)



58 Appendix A. Deep Learning

In this vein, we reduce the general uncertainty to that of uniform distributions:

Hn(p1, . . . , pn) = H̃(Σni)−
n∑

i=1

piH̃(ni)

= K log(Σni)−K

n∑
i=1

pi log(ni)

= K
( n∑

i=1

pi log(Σni)−
n∑

i=1

pi log(ni)
)

= −K
n∑

i=1

pi log( ni

Σni
)

= −K
n∑

i=1

pi log(pi)

Finally, if (p1, . . . , pn) ∈ 4n−1 are real-valued, the claim follows from the continuity
requirement (U1).

The theorem establishes entropy as somewhat the most mathematically soundmeasure
of uncertainty in a distribution, with the only degree of freedom being the choice of the
constant K. Returning to the optimal code analogy, the constant merely amounts to
a choice of unit, since via K = 1

log(b) for some b ∈ R>1 it may be integrated into the
logarithmic expression, then using base b instead of e.

A.1.2 Comparing Distributions

While entropy is a powerful measure of information in a single random variable, it does
not help us with our goal of determining the difference between two random variables.
Or does it? When we allow the two random variable instances in Definition 2 to differ,
we immediately obtain a measure for two variables.

Definition 3 (Cross-Entropy). Let x, x̂ : Ω → Rd be finitely supported random vec-
tors with supp(x) = supp(x̂). The cross-entropy of x from x̂ is

H(x ‖ x̂) := E[Ix̂(x)] = −
∑

x∈supp(x)
P[x = x] log(P[x̂ = x])

In the coding theory setting, we may interpret cross-entropy as the average message
length required to identify outcomes of a distribution when borrowing a code opti-
mized for another distribution. If this intuition is to work, surely cross-entropy from the
variable optimized to the current variable must always be at least as large as the sole
entropy of the current variable. Fortunately enough, it is!
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Lemma 2 (Gibbs’ Inequality). For finitely supported random vectors x, x̂ : Ω → Rd

with supp(x) = supp(x̂), the following inequality holds:

H(x ‖ x̂) ≥ H(x)

Furthermore, H(x ‖ x̂) = H(x) if and only if x ∼ x̂.

Proof. We first show that log(x) ≤ x− 1 holds for all x ∈ R>0. To this end, define

d : (0,∞)→ R, d(x) = (x− 1)− log(x).

This difference function is differentiable and

d′(x) = 1− 1

x
= 0 ⇐⇒ x = 1, d′′(x) =

1

x2
> 0

shows that it has a local minimum at d(1) = 0. Because of

lim
x→0+

d(x) =∞ and lim
x→∞

d(x) =∞

this is guaranteed to be the global minimum of d.

Now write supp(x) = {x1, . . . ,xn} and set pi := P[x = xi], qi := P[x̂ = xi]. Then:

H(x ‖ x̂)−H(x) = −
n∑

i=1

pi log(qi) +
n∑

i=1

pi log(pi)

= −
n∑

i=1

pi log qi
pi

≥ −
n∑

i=1

pi

(
qi
pi
− 1

)

= −
n∑

i=1

(qi − pi)

=

n∑
i=1

pi −
n∑

i=1

qi

= 0

For equality, we need all qi
pi

= 1 and hence pi = qi.

Gibbs’ Inequality confirms the intuitive notion of the difference between cross-entropy
and entropy as excess entropywhen abusing an optimized code for another distribution.
Since this difference is always non-negative and zero only on distributional equality, it
can servedi as dissimilarity measure between distributions. In fact, this is a widely used
measure and sometimes used to define cross-entropy.
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Definition 4 (Kullback-Leibler Divergence). Let x, x̂ : Ω→ Rd be finitely supported
random vectors with supp(x) = supp(x̂). The Kullback-Leibler divergence (KLD) of x
from x̂ is

DKL(x ‖ x̂) := H(x ‖ x̂)−H(x) = Ex∼x

[ log(P[x = x])

log(P[x̂ = x])

]
Note that due to the asymmetry in the definition of cross-entropy, also the KLD is in
general not symmetric. Thus, it unfortunately does not fulfill all axioms of a metric.
However, this is not an issue since our machine learning setting is asymmetric as well:
We measure the excess entropy when utilizing the model distribution P[ŷθ = · | x = x]

for predicting the data distribution P[y = · | x = x]. To this end, we require one last
formality to account for the conditionality of the distributions.

Remark 1 (Conditional Variants of Information Measures). Let x : Ω → Rn and
y, ŷ : Ω → Rd be finitely supported random vectors with supp(y) = supp(ŷ). The
information measures discussed so far extend straighforwardly to conditional distribu-
tions by averaging over the prior:

(a) H(y | x) := E[E[Iy(y) | x]] = −
∑

x∈supp(x)
y∈supp(y)

P[y = x,x = x] logP[y = x | x = x]

(b) H(y ‖ ŷ | x) := E[E[Iŷ(y) | x]] = −
∑

x∈supp(x)
y∈supp(y)

P[y = x,x = x] logP[ŷ = x | x = x]

(c) DKL(y ‖ ŷ | x) := H(y ‖ ŷ | x)−H(y | x)

Finally, the conditional KLD is the loss functionwewant tominimize. Since the entropy
term does not depend on the parameters, minimizing conditional KLD in fact reduces
to minimizing conditional cross-entropy:

arg min
θ∈Θ

DKL(y ‖ ŷθ | x) = arg min
θ∈Θ

H(y ‖ ŷθ | x)

Thus, we might as well say that we employ cross-entropy as the loss function, although
from a theoretical standpoint KLD is the true difference measure. Bearing in mind that
the datasetD defines an empirical distributionwithP[x = x,y = y] = 1

|D| for (x,y) ∈ D,
we obtain the final, delightfully simple, loss formula:

LD(θ) = −
1

|D|
∑

(x,y)∈D

log(P[ŷθ = y | x = x]) (A.3)

We are thus finally able to quantify the error of the machine learning model f̂θ on the
dataset D with the loss function LD depending on the model’s parameters θ. Our next
ambition will be to get this error as small as possible.



A.2. Optimization 61

A.2 Optimization

Now that we have the loss function (A.3), we need a means to minimize it with respect
to the parameters. A good starting point is the fact that at any local minimum θ∗ ∈ Θ

the loss must have zero gradient, i.e., satisfy ∇LD(θ∗) = 0. However, in general, it
is impossible to solve this equation for θ∗ in closed form due to the complexity of the
model f̂θ in modern architectures that define the probability terms. Therefore, we must
resort to numerical methods for finding zeros of the gradient.

A.2.1 Gradient Descent

The most famous technique for finding zeros of a differentiable function is Newton’s
method. Unfortunately, it is not feasible for our use case since it involves calculating
Jacobi matrices of the gradient, i.e., second derivatives of the loss function. For huge
datasets, as they occur in practice, Newton’s method thus imposes a significant compu-
tational burden that we aim to avoid. Instead, the preferred approach is to utilize only
the first derivatives provided by the gradient and traverse the loss function “downhill”.
To formalize this, we require a measure of loss surface steepness at a point along arbi-
trary directions, not just the basis vectors as given by the partial derivatives.

Definition 5 (Directional Derivative). Let D ⊆ Rn be open. The directional derivative
of a function f : D → R in the direction of v ∈ Rn at point x ∈ D is given by

Dvf(x) := lim
h→0

f(x+ hv)− f(x)

h

if this limit exists. In this case f is said to be directionally differentiable.

The directional derivative is a straightforward generalization of the partial derivatives.
Since the limit expression is unpleasant to work with, we seek a better way to calculate
the directional derivative. The following lemma shows that it can be reduced to an
inner product of the direction vector with the gradient! Interestingly, this again means
that directional derivatives are not really more general than gradients but just linear
combinations of the partial derivatives according to the direction coordinates.

Lemma 3 (Directional Derivative Inner Product). Let D ⊆ Rn be open. If f : D → R
is differentiable at x ∈ D, then for any v ∈ Rn

Dvf(x) = vT∇f(x).

Proof. The set D̃ := {h ∈ R | x + hv ∈ D} is open as preimage of a linear function.
Defining on it g : D̃ → R as g(h) = f(x+ hv), we get using the chain rule:

Dvf(x) = lim
h→0

g(h)− g(0)

h
= g′(0) = vT∇f(x)
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At first glance, it does not seem obvious how to find a specific direction along which the
gradient is smallest. With the more tractable expression for the directional derivative
given by Lemma 3, we can find it by solving an optimization problem for our optimiza-
tion problem. It turns out to be a delightfully simple direction.

Theorem 3 (Steepest Ascent). Let D ⊆ Rn be open and f : D → R differentiable.
The gradient of f at point x ∈ D always points in a direction of steepest ascent:

∇f(x) ∈ arg max
v∈Rn,‖v‖=1

Dvf(x)

Likewise, the negative gradient points in a direction of steepest descent:

−∇f(x) ∈ arg min
v∈Rn,‖v‖=1

Dvf(x)

Proof. Using Lemma 3 and elementary analytic geometry, we obtain:

max
v∈Rn,‖v‖=1

Dvf(x) = max
v∈Rn,‖v‖=1

vT∇f(x)

= max
v∈Rn,‖v‖=1

‖v‖
∥∥∇f(x)∥∥ cos(](v,∇f(x))

=
∥∥∇f(x)∥∥ max

v∈Rn,‖v‖=1
cos(](v,∇f(x))

=
1∥∥∇f(x)∥∥∥∥∇f(x)∥∥2

=
∇f(x)T∥∥∇f(x)∥∥∇f(x)

= D ∇f(x)∥∥∇f(x)
∥∥∇f(x)

Due to the nature of cosine, a direction of steepest descent is given by −∇f(x).

Motivated by Theorem 3, Cauchy [Cau47] invented a straightforward algorithm termed
gradient descent working its way towards a potential minimum: Start with some initial
guess of the parameters and then repeatedly perform a step in the direction of the neg-
ative gradient. Since derivatives are a local phenomenon, we have no idea of how far
we should go. Hence, the algorithm depends on a hyperparameter which determines
the step size. It is commonly dubbed the learning rate. While machine learning mod-
els depend on many hyperparameters, the learning rate arguably constitutes the most
important one [GBC16]. The algorithm repeats making small steps in promising direc-
tions until the gradient is zero – or rather almost. Recall that floating-point arithmetic
in computers is not exact for very small values, so in practice we content ourselves as
soon as the gradient is close enough to zero. For simplicity, though, AlgorithmA.1 only
gives a conceptual sketch of gradient descent neglecting numerical intricacies.
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/* approximates a potential minimum of LD */
GD(α ∈ R>0 : learning rate, θ ∈ Θ : initial parameters):

1 while ∇LD(θ) 6= 0 :
2 θ := θ − α∇LD(θ) // apply parameter

update

Algorithm A.1: Gradient Descent

This “vanilla” gradient descent has a significant drawback in practice: Computing the
loss function and its gradient over the entire dataset is prohibitively expensive. To miti-
gate computational complexity and enable practicality, we hence evaluate the loss only
on a small random sample of the dataset called a minibatch. Clearly, resorting to an
estimated gradient instead of the real one sacrifices theoretical elegance as well as de-
terminism, but limited computational resources leave no other choice. The modified
procedure known as stochastic gradient descent (SGD)dates back toKiefer andWolfowitz
[KW52] and is outlined in Algorithm A.2. In each iteration of SGD known as epoch, we
first split the dataset into random partitions of a certain maximum size. To ensure an
efficientmemory layout, one typically chooses a power of two for this batch size, our next
hyperparameter. [GBC16] Then, we perform gradient descent update steps for each of
these partitions.

/* approximates a potential minimum of LD using minibatches */
SGD(α ∈ R>0 : learning rate, β ∈ N≥1 : batch size, θ ∈ Θ : initial parameters):

1 do
2 D1, . . . ,Dn := batchify(D, β) // split D = D1 ∪· . . . ∪· Dn

3 for i := 1 to n do
4 θ := θ − α∇LDi(θ) // apply parameter update

5 while ¬stopping_criterion(θ)
Algorithm A.2: Stochastic Gradient Descent

Note the replacement of the naive exit condition depending on the gradient value with
a general one depending on the parameters. Since the gradient updates are now based
on constantly changing subsets of the dataset, there is no guarantee for it ever to step
sufficiently close to zero. Instead, one often employs a technique called early stopping:
One tracks the loss value on a separate evaluation set disjoint from the training set that
gradient descent optimizes on. This yields an unbiased estimate of the model’s real-
world performance, and once it does not continue to improve, we may stop iterating.

Clearly, the descent algorithm depends heavily on the choice of its hyperparameters,
and these are not independent: Using a smaller batch size means more parameter up-
dates, and hence the learning rate should be reduced accordingly. However, to get a
stable approximation of the true gradient, we usually want the batch size to be as large
as the computing hardware allows. Thus, we can consider its value fixed given the
execution environment, such that just the learning rate needs further examination.
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Overall, two naiveties remain in the update step of Algorithm A.2:

1. Greedy direction choice: Blindly following the negative gradient at all costs is not
a good idea for functions that are beyond simple. It might lead the descent al-
gorithm to take unnecessary sharp turns despite moving generally in the right
direction. Such a behavior significantly increases the time until SGD converges.

2. Inadaptive learning rate: Using the same, constant learning rate for all update steps
is unjustified. The descent algorithm might traverse regions in parameter space
that are very flat at one time, requiring a large learning rate, and regions with
steep cliffs at another time, where a lower learning rate is imperative.

These issues are addressed by several extensions to SGD. We describe the three most
groundbreaking of them conceptually to highlight their central ideas and refer to the
literature for further details:

Momentum In order to alleviate the aggressive turns caused by stubbornly stepping
downhill, the Momentum extension [Pol64] introduces the homonymous physi-
cal concept, or simply velocity9, into the descent procedure. Starting with a zero
value, the algorithm updates velocity in each step as an exponential moving aver-
age between the past velocity and the direction according to naive SGD. Then we
perform the parameter update in the averaged direction specified by the velocity.
In this manner, inertia is added to the process, and thus the traversal through pa-
rameter space is smoothened out. Effectively, we can regard themoving average as
an estimation of the first statistical moment of the partial derivative distribution.

RMSProp To make the learning rate sensitive to the current gradient value, the Root
Mean Squared Propagation (RMSProp) extension [Hin12] scales it for each param-
eter individually by a factor depending on that parameter’s partial derivative his-
tory. In particular, the optimizer tracks an exponential moving average of the
square of the partial derivative like Momentum does with the derivatives them-
selves for velocity. The learning rate is then divided by the square root of this
average, effectively being an estimation of the second (uncentered) statistical mo-
ment of the partial derivative distribution.

Adam Killing two birds with one stone, the Adaptive Moments (Adam) [KB15] opti-
mizer essentially combines Momentum with RMSProp. Consequently, it tracks
two moving averages for the first and second moment of the partial derivative
distribution, respectively. These are then used to adapt the learning rate, hence
the name. However, one component makes Adammore than just the union of the
other two extensions: Adam adds bias correction terms to the updates to account
for the implicit bias resulting from initializing the moving averages with zero.

9Since physical momentum is mass times velocity, they only differ by a constant factor.
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Other noteworthy optimizers are Nesterov Accelerated Gradient Descent (NAG) [Nes83],
Averaged SGD (ASGD) [PJ92], Adaptive Gradient Descent (AdaGrad) [DHS11], Nesterov
Accelerated Adam (NAdam) [Doz16] and Rectified Adam (RAdam) [Liu+20]. From a the-
oretical standpoint, an optimizer addressing both consistent direction and adaptive
learning rate like Adam would be preferable. However, in practice this conceptual ad-
vantage does not seem to play out. In some cases, adaptive optimizers even underper-
formplain stochastic gradient descent [Wil+17]. Hence, it is still required to experiment
with different versions of SGD, the choice of which being yet another hyperparameter.

Any optimizer provides a way to find potential local minima of the objective function.
Since zero gradient is only a necessary condition also fulfilled by, e.g., saddle points or
evenmaxima,we cannot be sure that the point gradient descent converges to is actually a
local minimum. However, unless the algorithm happens to start exactly at a maximum,
it will never converge to one since every direction points downwards10. With saddle
points, this ismore complicated, but it has been shown that gradient descentwill almost
surely overcome saddle points [Lee+16]. Saddle point evasion is further leveraged by
the noise in the gradient estimation introduced by using minibatches [Jin+17].

In summary, gradient descent practically finds a local minimum. But that is it, a local
one. Unless the optimization target is a strictly convex function, there are no guarantees
for gradient descent to converge to a global minimum. A possible remedy is to execute
gradient descent repeatedlywith different, usually randomly initialized, starting values
for the parameters θ. Then one can at least choose the best from several proposed local
minima that hopefully is close enough to the value of a genuine global minimum.

A.2.2 Backpropagation

The only missing piece left in the optimization procedure is a way actually to compute
the gradient ∇LD(θ). For evaluation on a real machine, the loss function LD has to be
a composition of elementary operations that we know the gradients of. Thus, it can be
thought of as a directed graph of these operations.

Definition 6 (Computational Graph). A computational graphG := (V,E) is a directed
acyclic graph (DAG), consisting of

• a set V = {(x1, f1), . . . , (xn, fn)} of symbolic variables xi with associated elemen-
tary operations fi : Rni → R that are differentiable, and

• a set E ⊆ {(i, j) ∈ {1, . . . , n}2 | i < j} of directed edges such that for each
(xi, fi) ∈ V the number of parents matches the input dimension:∣∣{(xj , fj) ∈ V | (j, i) ∈ E}

∣∣ = ni.

10Unless the function is locally constant, in which case we already are at a local minimum.
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Illustrative examples for computational graphs are given in Figure A.3. The variables
in such a graph represent the objects we can calculate with, in our case scalars of real
numbers. However, Definition 6 easily covers vectors, matrices, and higher dimensional
tensors, too: Just group individual scalars to form the desired structures and alter the
operations accordingly.

z

·

x y

z

+

by

matmul

A x

Figure A.3: Left: Computational graph for the multiplication z = xy. Right: Computa-
tional graph for the affine transformation z = Ax+ b.

The DAG requirement for a computational graph is essential for being able actually to
compute the function. This forward pass or forthpropagationworks as follows: Since G has
a topological ordering, we know there is a k ∈ N such that the first k vertices of the graph
have no incoming edges. Further, suppose we are given real numbers a1, . . . , ak ∈ R as
value assignments for those vertices. For each vertex further down the graph, we simply
collect the values of all direct ancestors, which are guaranteed to already having been
calculated as G is acyclic. Then we perform the vertex operation on the gathered values,
resulting in a value assignment for this vertex. We repeat this process until the final
vertex of the topological ordering is reached as outlined in Algorithm A.3.

/* successively evaluates the function represented by
the computational graph */

fprop(G : computational graph, a1, . . . , ak ∈ R : input values):
1 (x1, . . . , xk) := (a1, . . . , ak) // initialize input variables
2 for i = k + 1 to n do
3 xi := fi(xj | (j, i) ∈ E) // apply operation to parents

4 return xn

Algorithm A.3: Forward Propagation in Computational Graphs.

However, we do not only want to evaluate the function itself; we also need its gradient!
More specifically, we desire the partial derivatives ∂fn

∂xi
(xn) at least for the first k vari-

ables. The path from a variable xi to the output vertex xn is essentially a function in one
dimension. However, following the graph’s structure, we can split it in two parts: One
function that computes the immediate children of xi, considering the other input to the
child as fixed parameters. And one function that continues from the children through
the rest of the graph.
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Lemma 4 (Inflated Composition Derivative). Let f : R → Rd and g : Rd → R be
differentiable. Then the derivative of h := g ◦ f is given by

h′ =
d∑

i=1

∂g

∂xi
· dfidx . (A.4)

Proof. This is a special case of the chain rule: For x ∈ R, we have

h′(x) = ∇g(f(x))f ′(x) =
[

∂g
∂x1

(f(x)) · · · ∂g
∂xd

(f(x))
]

f ′
1(x)
...

f ′
d(x)

 =

d∑
i=1

∂g

∂xi
(f(x))

dfi
dx (x)

where fi shall denote the i-th component function of f .

The simple differentiation rule from Lemma 4 forms the heart of the backward pass or
backpropagation algorithm [RHW86] that follows the forward pass. Starting from the
output, as opposed to the forward pass, we calculate partial derivatives with respect
to the immediate parents in the graph, who combine the incoming gradients accord-
ing to (A.4). It is fairly common to say that the gradients flow backward through the
computational graph, which also explains the name of Algorithm A.4.

/* calculates partial derivatives of the last vertex
with respect to all vertices */

bprop(G : computational graph):
1 grads[x(n)] := 1 // derivative w.r.t. oneself is 1
2 for i = n− 1 to 1 do

3 grads[xi] :=
∑

(i,j)∈E

grads[xj ] ·
∂fj
∂xi

(xj)

4 return grads[x1, . . . , xk]

Algorithm A.4: Backward Propagation in Computational Graphs

It is worth noting that backpropagation follows the principle of dynamic programming:
As soon as the gradient of the output with respect to a variable has been computed, it
saves the result in a data structure so it can be reused. Furthermore, by performing one
forward pass through the graph once in the beginning, the values for intermediate vari-
ables do not have to be recalculated. Trading memory for time, this avoids redundantly
computing the same expressions repeatedly.

To conclude, with gradient descent, we now have a means to optimize the loss LD with
respect to the model parameters θ. Throughout this process, we repeatedly evaluate
the loss function for the current parameters by forthpropagation, determine the gradi-
ent by backpropagation and ultimately update the parameters according to the specific
optimizer version. In this vein, the model can be fit to the data distribution.
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A.3 Neural Networks

With a loss function and an optimization strategy for our machine learning model f̂θ at
hand, it remains to specify how the model itself looks like. More precisely, we need to
define how the parameters θ are interweaved with the input x to yield a result. Over
the last decade, a particular kind of model called artificial neural network has entered
the center of machine learning research. As the name suggests, it aims to imitate the
mechanics going on in a human brain.

A.3.1 Multi-Layer Perceptrons

The elementary building block for artificial neural networks is, of course, an artificial
neuron. Human neurons, as depicted in Figure A.4, receive inputs from multiple so-
called dendrites, process these in the cell body resulting in a binary activation that in
the positive case makes the neuron fire an output along its axon to subsequent neurons.
Inspired from their biological counterparts, artificial neurons mimic this behavior by
modeling the cell body processing as a parameterized transformation of the inputs.

Definition 7 (Artificial Neuron). An artificial neuron with weights w ∈ Rn, bias b ∈ R
and activation function σ : R→ R is a function νw,b,σ : Rn → R given by

x 7→ σ(wTx+ b) = σ
( n∑

i=1

wixi + b
)
.

Importantly, the learnable parameters of an artificial neuron are its weights and bias.
They are combined with the neuron’s input through a rather simple affine transfor-
mation mainly for numerical reasons. Linear algebra operations are implemented very
efficiently on current computer hardware, especially graphics processing units. To com-
pensate for their lack of expressiveness, the activation function allows for an arbitrarily
complex transformation of the result. We will shortly consider good choices for activa-
tion functions in detail.
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Figure A.4: Left: Biological model of a real neuron, adapted from Wikimedia [Wik19].
Right: Computational graph of an artificial neuron.
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A single neuron cannot be expected to learn complicated patterns from the dataset.
Like in the human brain, intelligence arises from interconnectingmany neurons to form
a network. In principle, any connected topology of artificial neurons can be regarded as
an artificial neural network. However, for practical reasons, certain standard structures
have evolved that can be easily implemented. The major concept in building neural
network architectures is that of a layer of neurons that process the same inputs in parallel
to concentrate on different aspects of the task at hand. The simplest possible layer is
obtained by connecting all the neurons of that layer to all incoming inputs.

Definition 8 (Dense Layer). A dense layer with input size n ∈ N and output size d ∈ N,
weightsW = (w1, . . . ,wd)

T ∈ Rd×n, biases b = (b1, . . . , bd)
T ∈ Rd and activation function

σ : R→ R is a collection of d single neurons νwi,bi,σ : Rn → R:

denseW ,b,σ(x) := σ(Wx+ b) = σ



wT

1
...

wT
d

x+


b1
...
bd


 =


νw1,b1,σ(x)

...
νwd,bd,σ(x)



Definition 8 demonstrates the big advantage of using ordinary affine transformations:
The parameters can be straighforwardly stuffed into higher-dimensional tensors, here a
matrix of weights and a vector of biases. In batched optimization, this scalability allows
to arrange the inputs of a batch in amatrixX ∈ Rn×b and calculate the output of a dense
layer as simply as σ(WX+b), with b added column-wise and σ applied element-wise.

Stacking multiple dense layers on top of each other allows neurons to depend on the
work of other neurons and yields the most basic neural network architecture. It is
named a Multi-Layer Perceptron (MLP) after the historical Perceptron model [Ros58],
a special kind of artificial neuron. An MLP consists of the input layer and output layer
with an arbitrary number of hidden layers in between, as exemplified in Figure A.5.
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Figure A.5: Example of a multi-layer perceptron. Note that this is no computational
graph, since weights and biases are missing and the operations are not specified.
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A.3.2 Activation Functions

The expressive power of neural networks depends solely on the choice of activation
function: Suppose we took an affine transformation for activation just like we did for
the input processing. Then Linear Algebra tells us that the resulting neuron as a com-
position of affine transformations would itself again be such a one.

Lemma 5 (Affine closure). If f : Rn → Rm and g : Rm → Rd are affine, so is g ◦ f .

Proof. Write f(x) = A1x + b1 with A1 ∈ Rm×n, b1 ∈ Rm and g(y) = A2y + b2 with
A2 ∈ Rd×m, b2 ∈ Rd. Then

g(f(x)) = A2(A1x+ b1) + b2 = (A2A1)︸ ︷︷ ︸
=:A

x+ (A2b1 + b2)︸ ︷︷ ︸
=:b

shows that (g ◦ f)(x) = Ax+ b is affine.

In fact, affine transformations even form amonoidwith respect to function composition.
Stacking multiple of those neurons thus would not expand expressivity either since the
entire model collapses into a single affine transformation. This would render the neural
network learning nothing else than overly complicated linear regression, which is not
particularly expressive. For this reason, it is imperative to choose an activation function
that is non-affine.

If we wanted to model biological neurons as close as possible, we would intuitively
choose a function that behaves as follows: Starting from negative infinity, it has the
constant value zero, meaning no activation of the neuron. At a certain threshold then, it
suddenly jumps to a positive value, as shown in Figure A.6(a), and stays constant from
then onwards. Such a function was used historically with Perceptrons [Ros58].

Definition 9 (Heaviside Step Function). TheHeaviside step function is given for x ∈ R
by

Heaviside(x) := 1(0,∞) =

1 for x > 0

0 for x ≤ 0

Although the Heaviside function would be the most plausible choice, it has two fatal
deficiencies. Recall that we intend to optimize the model’s parameters with gradient
descent. Then firstly, Heaviside is not differentiable in zero11. For gradient descent
to work, we need the entire model and hence all its components to be differentiable
everywhere. Secondly, even if we somehow fixed the first problem with an artificial
derivative value, the derivative would be zero almost everywhere and thus the whole
gradient for this neuron’s parameters, annihilating all optimization endeavors.

11Or the derivative is infinity if we consider the extended real number line.
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The observations so far show that a good activation function has to be at least non-
affine, differentiable and optimally non-constant everywhere. To achieve this, we could
“smoothen out” the Heaviside function so that it fulfills these properties. Indeed, there
is a function arising from the study of dynamical systems that does just this.

Definition 10 (Logistic Function). The logistic function is given for x ∈ R by

expit(x) := 1

1 + e−x
(A.5)

Remark 2 (Properties of the logistic function). Since the denominator in (A.5) is al-
ways greater than 1, the logistic function takes only values in (0, 1) and the limits are

lim
x→−∞

expit(x) = lim
x→−∞

1

1 + e−x︸︷︷︸
→∞

= 0, lim
x→∞

expit(x) = lim
x→−∞

1

1 + e−x︸︷︷︸
→0

= 1.

Furthermore, as a composition of differentiable functions, expit itself is differentiable
with its derivative given by

expit′(x) = d

dx
(1 + e−x)−1 =

d

dx
(1 + e−x)(1 + e−x)−2 = expit(x)︸ ︷︷ ︸

>0

(1− expit(x)︸ ︷︷ ︸
>0

) > 0

and therefore, the logistic function increases strictly monotonically from 0 to 1.

The derived properties can be seen clearly in FigureA.6(b). Towards infinity, the logistic
function becomes flatter and flatter and, therefore, more insensitive to small changes.
This is commonly referred to as saturation. Functions behaving like this are commonly
called sigmoids. Another famous sigmoid is closely related to the logistic function and
mainly differs from the latter in that its activation can become negative. It is well-known
from hyperbolic geometry.

Definition 11 (Tangens Hyperbolicus). The hyperbolic tangent is given for x ∈ R in
analogy to the ordinary tangent via

tanh(x) := sinh(x)
cosh(x) =

ex − e−x

ex + e−x
= 1− 2

e2x + 1

Remark 3 (expit and tanh). The tangens hyperbolicus is nothing but a stretched and
shifted logistic function:

tanh(x) = ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
=

2− (1 + e−2x)

1 + e−2x
=

2

1 + e−2x
− 1 = 2 expit(2x)− 1

Specifically, this proves that its image is tanh(R) = 2 · (0, 1) − 1 = (−1, 1), as Figure
A.6(c) visually suggests.
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Although expit and tanh satisfy our necessary conditions to a proper activation func-
tion, one of their beautiful properties turns out as a major drawback: According to Re-
mark 2, the logistic function is contained in its own derivative, and due to Remark 3 in
the derivative of the hyperbolic tangent as well. In a multi-layer network, the gradient
will, during backpropagation, flow through successive exponential terms, which can
cause the gradient to become very small or large. As a result, the gradient descent up-
date step size for earlier layers is either insignificant or overshoots. This is known as the
exploding gradient problem and vanishing gradient problem, respectively, and applies to all
sigmoidal functions [LeC+98].

To stabilize the gradient descent optimization for arbitrarily deep neural networks, we
must discard sigmoids altogether. Their use as activation functions for hidden neurons
is nowadays discouraged [GBC16]. Since exponential terms are problematic, we resort
to expressions that do not blow up upon composition. In practice, a deceptively simple
activation function using only linear expressions turned out highly successful [NH10;
KSH12].

Definition 12 (Rectified Linear Unit). The rectified linear unit (ReLU) activation func-
tion is given for x ∈ R by

ReLU(x) := max{0, x} =
∫ x

0
Heaviside(t)dt

Remark 4 (Differentiability of ReLU). ReLU is not differentiable in the origin since

lim
x↗0

ReLU′(x) = 0 6= 1 = lim
x↘0

ReLU′(x).

Usually one defines ReLU′(0) := 0, so we consistently have ReLU′ = Heaviside.

A plot ofReLU is given in FigureA.6(d). Its advantages are twofold: Firstly, the compu-
tational effort for a forward pass isminimal, being a simple value comparison. Secondly,
due to the linear nature gradients will keep their magnitude during a backward pass.
Variants and generalizations of ReLU include absolute value rectification [Jar+09], Leaky
ReLU (LReLU) [Maa13] parametric ReLU (PReLU) [He+15b], Gaussian Error Linear Unit
(GELU) [HG16] and maxout units [Goo+13].

Having discussed several activation functions, we wonder if they indeed make a neural
network more expressive than linear regression. Fortunately, according to the universal
approximation theorem, feedforward networks with certain types of bounded activation
functions like the logistic function or the hyperbolic tangent are capable of approximat-
ing any Borel-measurable function between finite-dimensional spaces [Cyb89; HSW89].
However, this result does not apply to the rectified linear unit, which is unbounded in
the positive direction. It was later generalized to locally bounded piecewise continuous
activation functions [Les+93], a category which also ReLU and its variants fall into.
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Figure A.6: Common activation functions. (a) TheHeaviside step function and its zero-
everywhere derivative. (b) The logistic function compressing all of R into (0, 1), and its
hill-shaped derivative. (c) The hyperbolic tangent being symmetric about the origin
along with its derivative. (d) The rectified linear unit and its Heaviside derivative.

Activation functions like those in Figure A.6 should only be used for neurons in hidden
layers of a neural network since they all have a restricted image. Instead, for regression
tasks where the desired output is real-valued and numerical, one simply omits the acti-
vation, i.e., uses the identity to allow the affine transformation result to pass through.
For classification tasks, where the output is discrete and categorical, we need an addi-
tional layer that allows the network to communicate its categorical decision.

Definition 13 (Softmax). The softmax activation function is given for x ∈ Rn as

softmax(x) :=
[

exp(x1)∑n
k=1 exp(xk)

, . . . ,
exp(xn)∑n
k=1 exp(xk)

]
∈ Rn
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Please note that softmax is not an activation function of a single neuron, but rather an
entire layer that takes into account all outputs of the previous layer. It has a crucial
property that enables neural networks to “decide” between different options.

Remark 5 (Probability interpretation). After applying softmax to a vector, its com-
ponents take values in (0, 1) and add up to 1, since for each i = 1, . . . , n we have:

0 <

>0︷ ︸︸ ︷
exp(xi)∑n

k=1 exp(xk)
<

n∑
j=1

exp(xj)∑n
k=1 exp(xk)

= 1

Thus, the components of the result can be interpreted as probabilities associated with
the respective entry. If the dimensionality is chosen equal to the number of categorical
possibilities of a classification task, we can interpret the softmax output as directly real-
izing the discrete case of the probability distribution considered in Section A.1. Beyond
that, this special output layer has further desirable properties.

Remark 6 (Monotonicity of softmax). Let x ∈ Rn. If xi ≤ xj , then also

softmax(x)i =
exp(xi)∑n

k=1 exp(xk)
≤ exp(xj)∑n

k=1 exp(xk)
= softmax(x)j .

Hence, the order of components is preserved and arg max softmax(x) = arg maxx.
This explains the function’s name as portmanteau of soft and arg max.

Lemma 6 (Automonotonicity of softmax). The activation function softmax is au-
tomonotonic, i.e., for each i ∈ {1, . . . , n}, the component softmaxi is monotonic with
respect to xi, but reversly monotonic with respect to all other xj with j 6= i.

Proof. Since softmax is composed of differentiable functions on R, it is itself differen-
tiable. Using the quotient rule, we calculate the diagonal derivative

∂ softmaxj

∂xj
(x) =

exp(xj)
∑n

k=1 exp(xk)− exp(xj) exp(xj)
(
∑n

k=1 exp(xk))2
=

∑
k 6=j exp(xk)2

(
∑n

k=1 exp(xk))2
> 0

and find that fj is monotonically increasing with respect to xj . For i 6= j, we get

∂ softmaxi

∂xj
(x) = − exp(xi) exp(xj)

(
∑n

k=1 exp(xk))2
< 0

and hence fj is monotonically decreasing with respect to xi.

Informally speaking, automonotonicity means increasing the value of a component be-
fore applying the function also increases that component’s output value but decreases
all other output component values. This is exactly the behavior of one of many mutu-
ally exclusive possibilities becoming more likely. We could hence interpret the neurons
in the last layer before softmax to compete for delivering the maximum output.
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A.3.3 Convolutional Neural Networks

Aswe have seen, MLPswith appropriate activation functions are theoretically sufficient
to learn any task. However, in practice the domain of this task function is often signal
data like time series or images. They exhibit a structured topology where proximity is
meaningful, like in time or space. In this case, the connection globality of MLPs has
some drawbacks [GBC16]:

• Inefficiency: Full connection between two layers is the most expensive topology
possible. According to Definition 8, a dense layer with n inputs and d outputs re-
quires (n+ 1)d parameters. These need to be processed during forthpropagation
and adapted during backpropagation, which leads to significant time and mem-
ory consumption.

• Redundancy: Since a dense layer connects to every neuron in the previous layer,
it treats them all the same and hence can only find global patterns in their acti-
vations. To represent a local pattern, the weight matrix of the dense layer would
need to repeat this pattern for every possible input location, effectively constitut-
ing a waste of memory.

• Translation Variance: Each weight of a dense layer is used for a single neuron-
neuron pair only. Thus, when the input is slightly shifted, the output can dra-
matically differ. For data that preserve semantic under translation like signals,
this is problematic.

The described issues are addressed by convolutional neural networks (CNN) [LeC89], a
special type of neural network that introduces input topology awareness. They have
been popularized in 2012 when the AlexNet [KSH12] architecture won the ImageNet
object recognition challenge. The concept of a convolution which CNNs rely on stems
from the field of signal processing that we will briefly pay a visit to.

Definition 14 (Discrete Signal Space). The set `1(Z) of all functions x : Z → R that
are absolutely summable, i.e.,

‖x‖1 =
∑
k∈Z

∣∣x(k)∣∣ <∞
and have a finite support, i.e.,

∣∣supp(x)
∣∣ = ∣∣{k ∈ Z | x(k) 6= 0}

∣∣ <∞
is the discrete signal space. We call elements of `1(Z) signals.

Signals on their own are notmathematically interesting. One typicallywants to perform
operations on them. In principle, any transformation could be applied to a signal, but
in practice, we expect a certain behavior that we formalize next.
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Definition 15 (LTI Filter). A filter F : `1(Z) → `1(Z) is an operator that maps an
input signal x to an output signal Fx. It is called

• linear if any linear superposition of signals is preserved by the filter, i.e., for all
signals x, y ∈ `1(Z) and coefficients a, b ∈ R, it holds that:

F [λx+ µy] = λFx+ µFy (A.6)

• time-independent if shifting the input signal before applying the filter is the
same as shifting the result of the filter, i.e., if for any signal x ∈ `1(Z) and offset
k ∈ Z, it holds that:

F [x(·+ k)] = (Fx)(·+ k) (A.7)

If F fulfills both properties, it is called a linear and time-independent (LTI) filter.

Of course, we can not only perform operations on a single signal but also combine them
via component-wise or scalar addition and multiplication. However, the central notion
of signal processing is that of convolving two signals into a new one, being the eponym
of convolutional neural networks.

Definition 16 (Convolution). The convolution of two signals x, y ∈ `1(Z) is given by

x ∗ y :=
∑
k∈Z

x(k)y(· − k) ∈ `1(Z).

Lemma 7 (Commutativity). Convolution is commutative: For x, y ∈ `1(Z),

x ∗ y = y ∗ x (A.8)

Proof. Let n ∈ Z. Through the affine index substitution u := n− k, we obtain:

(x ∗ y)(n) =
∑
k∈Z

x(k)y(n− k) =
∑
u∈Z

x(n− u)y(u) =
∑
u∈Z

y(u)x(n− u) = (y ∗ x)(n)

Example 2. Consider the signals x, y ∈ `1(Z) defined by:

x(k) =

k if 0 ≤ k ≤ 42

0 otherwise
and y(k) =

1 if k = 0

0 otherwise

Their convolution comes about as:

(x ∗ y)(n) =
∑
k∈Z

x(k) y(n− k)︸ ︷︷ ︸
6=0 iff k=n

= x(n) y(0)︸︷︷︸
1

= x(n) =
∑
k∈Z

y(k)x(n− k) = (y ∗ x)(n)
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Example 2 shows that any signal can be represented as convolution with the so-called
Dirac impulse δ := 1{0} that has a peak at the origin and is zero everywhere else:

x = x ∗ δ (A.9)

This allows us to exploit the properties of LTI filters for attaining a central result of
discrete signal processing.

Theorem 4 (Kernel Theorem). An LTI filter F is fully defined by its kernel or impulse
response f := Fδ via a convolution: For any signal x ∈ `1(Z), it holds that

Fx = f ∗ x.

Proof. This follows by direct calculation and leveraging Lemma 7:

Fx
(A.9)
= F

∑
k∈Z

x(k)δ(· − k)


(A.6)
=
∑
k∈Z

x(k)F [δ(· − k)]

(A.7)
=
∑
k∈Z

x(k) (Fδ)︸︷︷︸
f

(· − k)

= x ∗ f (A.8)
= f ∗ x

Definition 17 (Cross-Correlation). The cross-correlation of x, y ∈ `1(Z) is given by

x ? y :=
∑
k∈Z

x(k)y(·+ k) ∈ `1(Z).

Remark 7. As the operation symbol suggests, cross-correlation is just a convolution
in disguise: With←−y := y(−·) being the time-reversed version of y, we get:

x ? y =
∑
k∈Z

x(k)y(·+ k) =
∑
k∈Z

x(k − ·)y(k) =
∑
k∈Z

x(· − k)y(−k) =←−y ∗ x = x ∗←−y

However, unlike convolution, the cross-correlation is not commutative: In the setting of
Example 2, we must realize:

(x ? y)(1) =
∑
k∈Z

x(k) y(1 + k)︸ ︷︷ ︸
6=0 iff k=−1

= x(−1) = 0 6= 1 = x(1) =
∑
k∈Z

y(k)x(1 + k) = (y ? x)(1)

Despite the mathematical beauty of the convolution operation, numerical libraries typ-
ically favor cross-correlation since it is conceptually simpler (no kernel flipping), and
for many purposes, the choice between the two does not matter.
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Figure A.7: Cross-correlation of vectors.

To implement signal processing, we need a discrete representation that the computer
can handle. Fortunately, this is possible with a simple index shift due to the finite sup-
port requirement to signals in the `1(Z) space.

Remark 8 (Vectors↔ Signals). We regard any vector x ∈ Rn as signal x ∈ `1(Z) and
any signal y ∈ `1(Z) as vector y ∈ RM−m by defining

x(k) :=

xk 1 ≤ k ≤ n

0 otherwise
and yi := y(m+ i)

where m := min supp(y)− 1 and M := max supp(y).

Thanks to Remark 8, we can apply all signal processing results to vectors. In particular,
the operations x∗y and x?y are straightforwardly defined, as illustrated in Figure A.7.
In this way, we are ready to define a new layer. The key idea is using a cross-correlation
whose kernel is defined by learnable parameters.

Definition 18 (1D Convolutional Layer). A one-dimensional convolutional layer with
filter f ∈ Rw of window size w ∈ N, bias b ∈ R2bn

2
c+1 and activation function σ : R→ R is

for input x ∈ Rn given by

conv1df ,b,σ(x) := σ(f ? x+ b) = Wx̃+ b ∈ R2bn
2
c+1

with x̃ := [01, . . . , 0bw
2
c, x1, . . . , xn, 01, . . . , 0bw

2
c]

T and the Toeplitz matrix

W :=


fT 0 . . . 0

0 fT . . . 0
... . . . . . . 0

0 . . . 0 fT


∈ R(2bn

2
c+1)×(n+2bw

2
c).

The convolutional layer’s namemight be misleading. After all, it uses cross-correlation.
However, and this is the crucial point, the parameters of the kernel are not manually
set but learned during the optimization process! Hence, the difference between convo-
lution and cross-correlation is rendered void. If we replaced cross-correlation with real
convolution in Definition 18, the network could simply learn the flipped kernel.
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Convolutional layers are very similar to fully-connected layers in that theymay be repre-
sented as an affine transformation. However, the key difference is that theweightmatrix
of a convolutional layer is sparsedue to thewindowsize usually beingmuch smaller than
the input size. Furthermore, the same parameters are used along the diagonal, mean-
ing that they are shared across all input locations. This leads convolutional layers to be
translation-equivariant12, so thatwhen a pattern is shifted in the input, the corresponding
representation resulting from cross-correlation is shifted in the same way.

Our definition of a convolutional layer is simplified. Firstly, convolutional layers are
normally stacked to allow for multiple filters to be used. This, of course, increases the
parameter number and computational cost but is usually still cheaper than a fully-
connected layer and further has all the properties that the latter lacks. Secondly, plain
cross-correlation slides the filter window across the input one at a time. In practice,
one allows for this stride to be a higher value than one, which is mathematically equiva-
lent to a cross-correlation with unit stride and subsequent downsampling. Thirdly, our
formulation implicitly adds zero padding to the input borders of half the kernel size
so that each component receives an output value. This is called same convolution, but
there are also other strategies such as valid convolution without zero-padding and full
convolution that pads with the entire kernel size [GBC16].

Regardless of the concrete arrangement of a convolutional layer, it is highly efficient.
Since the results for different output positions are entirely independent from one an-
other, convolutional layers can be parallelized straightaway. Specialized routines for
convolution operations in modern GPUs speed things up even more. To also lessen
memory requirements, it is common to follow a convolutional layer with another one
that shrinks output size by producing local summaries.

Definition 19 (Pooling Layer). A one-dimensional pooling layer with reduction function
% : Rw → R of window size w ∈ N is a function pool% : Rnw → Rn given by:

pool%(x) := [%(x1, . . . , xw), . . . , %(x(n−1)w+1, . . . , xnw)] ∈ Rn

Typical reduction functions for pooling layers are average-pooling or max-pooling. Using
the latter adds an additional property to a CNN. Since the summary statistic within a
window will not change for most windows when shifting the input by a tiny amount,
we can regard CNNs with pooling as being approximately locally translation-invariant
[GBC16]. This is especially the case when using multiple filters.

Our considerations so far were restricted to one-dimensional inputs. However, every-
thing discussed here can be lifted to two or more dimensions in a straightforward way:
The windows of filters and pooling layers simply become multi-dimensional as well.

12From Latin equi = equal and variare = change, meaning “equally changing”.
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A.3.4 Recurrent Neural Networks

The success of CNNs shows that exploiting structure present in the underlying data
through specialized components is crucial in deep learning. While convolutional net-
works are able to filter out certain translation-equivariant local features in the data, an-
other important variant of neural networks are recurrent ones. They model time seman-
tics, which shows up in all kinds of sequential data like time series or text. We motivate
their construction by considering the parameterized dynamical system

h(t) = fθ(h
(t−1),x(t)), (A.10)

where each state h(t) is a function of the previous state h(t−1) and the current input x(t).
This is a recurrent definition, so it requires some initial state h(0). We can then unfold
the expression to obtain, as visualized in Figure A.8, a sequential formulation:

h(t) = fθ(fθ(. . . fθ(h
(0),x(1)) . . . ,x(t−1)),x(t)).

The dynamical system model (A.10) thus assumes that each state can be determined
from the previous states and inputs by using the same function for all time steps. If you
will, you could interpret fθ as some “law of nature” inherent in the data. Consequently,
the parameters θ are shared across all time steps. Recall that parameter sharing was
already a winner concept for CNNs in Section A.3.3! To turn our dynamical system into
a neural network layer as well, Elman [Elm90] chose fθ in the standard way as an affine
transformation followed by a non-affinity.

Definition 20 (RNNLayer). ARecurrentNeuralNetwork (RNN) layerwith inputweight
W ∈ Rm×d, hidden weightU ∈ Rd×d, bias b ∈ Rd, activation function σ : R→ R and initial
state h(0) ∈ Rd is given for input sequence X = [x(1), . . . ,x(n)] ∈ Rm×n by

RNNW ,U ,b,σ,h(0)(X) := [h(1), . . . ,h(n)] ∈ Rd×n

where each hidden state h(t) for t = 1, . . . , n is

h(t) := σ(Wx(t) +Uh(t−1) + b).

h(0) h(1)

fθ

h(2)

fθ

. . . h(t)

fθ

x(1) x(2) . . . x(t)

Figure A.8: Unfolded computational graph of the dynamical system (A.10)
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Recurrent layers have some advantages: For one, their parameter number only depends
on the dimensionality of the input and the hidden states, but not on the sequence length.
Thus, they work with arbitrarily long inputs. Furthermore, they can use their hidden
state to transport information through time, i.e., use it asmemory. Thanks to this, RNNs
are universal: They have been shown to be capable of representing any function that
Turing machines can compute [SS91; SS95; Hyo96].

However, there is a major drawback to vanilla RNN layers as per Definition 20: Since
they repeatedly apply the same function over and over again for potentially a large num-
ber of steps, they tremendously suffer from the vanishing gradient problem introduced
in Section A.3.2. This leads to RNNs not being able to capture long-term dependencies, as
they require gradients to follow a long path in the computational graph without chang-
ing their magnitude significantly [Hoc91; BFS93; BSF94].

The key idea to mitigating the vanishing gradient problem in recurrent networks is
adding paths to the computational graph along which the gradient can flow unim-
peded. This has been famously done by Hochreiter and Schmidhuber [HS97] with an
architecture evocative of combinatorial circuits. We first give its formal layer definition
and then elucidate the mechanics based on Figure A.9.

Definition 21. (LSTM layer)A long short-termmemory (LSTM) layerwith input weights
Wi, Wf ,Wo,Wa ∈ Rm×d, hiddenweightsUi,Uf ,Uo,Ua ∈ Rd×d, biases bi, bf , bo, ba ∈ Rd,
activation function σ : R → R and initial states h(0), s(0) ∈ Rd is given for input sequence
X = [x(1), . . . ,x(n)] ∈ Rm×n by

LSTMWi,Wf ,Wo,Wa,Ui,Uf ,Uo,Ua,bi,bf ,bo,ba,σ,h(0),s(0)(X) := [h(1), . . . ,h(n)] ∈ Rd×n

where each hidden state h(t) for t = 1, . . . , n results from the components

(Input gate) i(t) := expit(Wix
(t) +Uih

(t−1) + bi)

(Forget gate) f (t) := expit(Wfx
(t) +Ufh

(t−1) + bf )

(Output gate) o(t) := expit(Wox
(t) +Uoh

(t−1) + bo)

(Activation) a(t) := σ(Wax
(t) +Uah

(t−1) + ba)

(Cell state) s(t) := f (t) � s(t−1) + i(t) � a(t)

(Hidden state) h(t) := o(t) � σ(s(t))

with � denoting the componentwise Hadamard product.

The central component of an LSTM layer, besides the hidden state also present in a
vanilla RNN layer, is its additional cell state that only participates in “lightweight” op-
erations so as to keep gradients stable. We can think of it as a highway with occasional
on-ramps and exits. Like in a vanilla RNN, the LSTM produces in each time step an
activation as an affine transformation of the current context.
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Figure A.9: Schematic overview of an LSTM cell, modified from Wikimedia [Wik18].

In contrast to the RNN layer, this context activation is further modified via three gates.
Each gate has its own parameters to be conditioned on the current context and yields a
factor between zero and one, indicating howmuch information to let through: The forget
gate and input gate control the contribution of the old cell state and the context activation
to the new internal cell state, respectively. The output gate controls the contribution of
the updated internal cell state to the hidden state that is exposed as output.

The LSTM performs remarkably in many applications including unconstrained speech
recognition [GMH13], machine translation [SVL14] and image captioning [Mao+14].
For completeness, we mention another RNN extension addressing the vanishing gradi-
ent problem called gated recurrent unit (GRU) [Cho+14]. As the name suggests, it just
like the LSTM utilizes the concept of gates but arranges these in a slightly different way.
Most significantly, it combines the forget and input gate to a single update gate that
produces a weighted average of the past state and the current activation.

Whatever recurrent layer one chooses, it provides representations that take into account
past information. Depending on the application, this one-sidedness is strictly required.
If it is not, a bidirectional RNN [SP97] enables output to depend on the whole input
sequence. It consists of two RNNs that work in parallel: A forward RNN processes
the input in order, while a backward RNN proceeds in reverse order. Their respective
hidden state outputs are simply concatenated to yield the overall output. Bidirectional
RNNs have been successful, for instance, in handwriting recognition [Gra+09], speech
recognition [GS05] and protein structure prediction [Bal+99].

Finally, we note that despite the success of modern recurrent architectures, they all have
a performance problem: Any RNN is inherently sequential since each time step may
only be processed once the previous is done. Consequently, RNNs cannot be efficiently
parallelized, which is a point inwhich they dramatically differ fromCNNs. Hence, they
should not be used with overly long input sequences [GBC16].
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A.3.5 Attention Mechanisms

The non-parallelizability of recurrent architectures as described in Section A.3.4 poses a
serious problem in practice. Furthermore, due to the sequential nature, evenLSTMs suf-
fer from vanishing gradients over long paths [Li+18]. Recently, RNNs are increasingly
replaced by so-called attention mechanisms that lack the temporal semantics of RNNs.
Their power arises from imitating the eponymous cognitive process of humans.13

At first, attention mechanisms were used only as a supplement to RNNs in the context
of machine translation. Suppose a two-layer RNN where the first layer has produced
hidden states h(1), . . . ,h(n) ∈ Rn and the second layer is about to determine its hidden
state s(t) ∈ Rd. Bahdanau et al. [BCB14] modify the second layer as follows: Instead of
directly using h(t) as current input, they interpose an alignment model a : Rd ×Rn → R,
itself a small neural network. It scores how well the input at position i aids the output
calculation at time t:

e
(t)
i := a(s(t−1),h(i))

These energy values are then via softmax turned into a probability distribution over the
input hidden states:

α
(t)
i := exp(e(t)i )∑n

j=1 exp(e(t)j )

The resulting attentionweights can differ for any combination of previous state and input.

Figure A.10: Visualization of the attention
weights between words in an English-
French machine translation task, with
brightness indicating weight size. Taken
from Bahdanau et al. [BCB14].

They finally determine what parts of the
input to attend to in a weighted sum
defining the context vector:

c(t) :=
n∑

i=1

α
(t)
i h(i)

It is this context vector that the second
RNN layer receives as input at time t.
Thanks to the alignmentmodel a, the con-
text vector c(t) contains a summary of the
information most relevant for processing
this time step. Furthermore, the attention
weights α(t)

i explicitly model an informa-
tion selection process. Hence, we can gain
insight into this process for a fully trained
model by inspecting the attention weight
structure as in Figure A.10. This increases
interpretability for sequence models.

13As great as it may sound, we should be cautious with neuroscientific analogies in deep learning.
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The described attention mechanism is a so-called soft attention mechanism since it uses
a weighted sum to smoothly attend to input vectors. On the other hand, hard atten-
tion mechanisms aim to model human attention more closely by only attending to one
or several inputs fully and completely ignoring the rest. However, since the involved
arg max operation is not differentiable, hard attention cannot be trained with gradient
descent. Instead, specialized optimization routines are required. Beyond that, attention
mechanisms are classified as being additive ormultiplicative, and global or local [LPM15].

Regardless of the concrete attentionmechanism, it was originally an extension to RNNs
and thus, by design, relies on them. On the contrary, the highly successful Transformer
architecture [Vas+17; Dev+19; Bro+20] follows the principle “attention is all you need”
by relying solely on attention as a first-class citizen. To this end, it generalizes the con-
cept to a broader scheme drawing from concepts of information retrieval: An attention
mechanism can be regarded as matching queries to a set of key-value pairs, in analogy
tomatching search strings to characteristic metadata of documents. In the RNN setting,
the queries are the respective previous states, and the values are the hidden states from
the first layer. The keys are equal to the values, which is the most common case.

Breaking away from RNNs, Transformers allow all queries to attend to all keys at the
same time. As this removes the temporal dependence from the architecture, the input
itself has to carry this information through an appropriate temporal encoding. Packing
all queries, keys, and values as columns intomatrices gives rise to a standalone attention
layer depicted in Figure A.11 that employs the dot product as an alignment model.

Definition 22 (Attention Layer). An attention layer is given for queriesQ ∈ Rdk×n and
keys K ∈ Rdk×n with associated values V ∈ Rdv×n by

Attention(Q,K,V ) := V softmax
(
KTQ√

dk

)
∈ Rdv×n.

In the case Q = K = V it is called a self-attention layer.

What catches the eye in Definition 22 is the division of the dot product score by the
square root of the value dimension. This amounts to a normalization factor for nu-
merical stability, since otherwise softmax increasingly tends towards regions of small
gradient, impeding backpropagation [Vas+17].

Note that this attention layer introduces no learnable parameters. While the earlier at-
tentionmechanisms employed a dedicated sub-network to determine alignment scores,
the Transformer attention layer expects the previous layers to learn appropriate repre-
sentations such that the dot product is ameaningfulmeasure ofmutual relevance. Only
stacking multiple attention layers does not increase the learning capabilities. Trans-
formers thus always employ dense layers before attention layers, which one should keep
in mind when using the attention layer outside of a Transformer architecture.
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FigureA.11: Schematic sketch of attention layers, adapted fromVaswani et al. [Vas+17].
Left: Plain attention layer. Right: Multi-head attention layer.

Different aspects of a learning task might require different attention alignments. For
this reason, Transformers use an improved version of the plain attention layer from
Definition 22 employingmultiple so-called attention heads: The queries, keys, and values
are first projected into different subspaces capturing different aspects. On each of these
subspaces, the standard attention layer is applied. Finally, the resulting “heads” are
reintegrated to yield an output, as shown in Figure A.11.

Definition 23 (Multi-Head Attention Layer). A multi-head attention layer with h ∈ N
heads and weights WQ

i ∈ Rdk×hdk ,WK
i ∈ Rdk×hdk ,W V

i ∈ Rdv×hdv ,U ∈ Rhdv×hdv is
given for queries Q ∈ Rhdk×n and keys K ∈ Rhdk×n with values V ∈ Rhdv×n by

MultiheadAttention
WQ

1 ,...,WQ
h ,WK

1 ,...,WK
h ,WV

1 ,...,WV
h ,U

(Q,K,V ) := U


head1

...
headh


where the attention heads are defined as:

headi := Attention(WQ
i Q,WK

i K,W V
i V )

To prevent misunderstandings, we highlight that although the multi-head attention
layer does have a bunch of weights, these are not sufficient for learning appropriate
alignments, alone for their comparatively low dimensionality. They serve only as a
means to an end to performing the subspace transformation. As discussed before, pre-
ceding (usually dense) layers are responsible for the actual learning process. Attention
layers merely impose a strong inductive bias on how the parameters should be learned.

In summary, we have now covered the elementary concepts in neural network design.
The major architectures comprise MLPs, CNNs, RNNs, and Transformer networks.
They do not need to be used in isolation but can, of course, be employed jointly, de-
pending on the application.
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A.4 Multi-class evaluation

Suppose that, applying everything discussed so far, we have trained a neural network
model f̂θ with gradient descent based on the cross-entropy loss function LD. Now we
intend to evaluate the performance of the model. To this end, we need an adequate
metric. In principle, we could simply call on the loss since it indicates the prediction
error used for optimization. However, while the cross-entropy loss is the theoretically
most grounded measure, it is not very interpretable. In this section, we derive the cru-
cial evaluation metrics used for classification tasks, where the codomain Y is finite and
categorical. Without loss of generality, we may thus assume Y = {1, . . . , C} for the
number C ∈ N of classes.

For discrete tasks, as classification is one, we correspondingly desire a discrete perfor-
mance measure. The most intuitive such choice is to count the percentage of correct
classifications, i.e., where model prediction and label in the dataset agree.

Definition 24 (Accuracy). The accuracy of f̂θ is defined as:

α := |{(x,y) ∈ D | f̂θ(x) = y}|
|D|

Example 3 (Imbalanced Classes). On D := {(1, 1), . . . , (99, 1), (100, 2)}, the majority
class predictor f̂θ : R→ {1, 2},x 7→ 1 has accuracy α = 99%.

As the example reveals, accuracy is highly sensitive to class imbalance. This implies
that, depending on the underlying dataset, the same accuracy score may be considered
either really good or disastrously bad. To obtain more robust metrics, we must break
down the model’s predictions on the dataset into all possible combinations of true and
predicted value.

Definition 25 (Confusion Matrix). The confusion matrix C ∈ NC×C of f̂θ is given by:

Cij := |{(x,y) ∈ D | y = i, f̂θ(x) = j}|

Remark 9 (Accuracy Reloaded). We can obtain accuracy from the confusion matrix:

α =
“diagonal sum”

“total sum” =

C∑
c=1

Ccc

C∑
i,j=1

Cij

The confusion matrix not only subsumes accuracy but, by definition, contains all quan-
titative information about the model’s predictions. Certain groupings in the matrix are
particularly meaningful and well-known from medical test design.
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Definition 26 (Positives and Negatives). For each class c ∈ {1, . . . C}, we define

(a) the number of true positives as TPc := Ccc,

(b) the number of false positives as FPc :=
∑
i 6=c

Cic,

(c) the number of false negatives as FNc :=
∑
i 6=c

Cci,

(d) the number of true negatives asTNc :=
∑
i,j 6=c

Cij .

These statistics are disjoint and partition the predic-
tion space into groups as illustrated in Figure 26.
Based on them, further quantities of interest are the
fraction of correct positive predictions and the hit ra-
tio of actually positive objects.

Definition 27 (Precision). The precision of f̂θ on
class c ∈ {1, . . . , C} is:

πc := TPc

TPc+FPc

Definition 28 (Recall). The recall of f̂θ on class
c ∈ {1, . . . , C} is:

ρc := TPc

TPc+FNc

relevant elements

retrieved elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many retrieved
items are relevant?

How many relevant
items are retrieved?

Figure A.12: Conceptualization
of positives, negatives, preci-
sion and recall. Taken from
Wikimedia [Wik14].

Remark 10 (Accuracy Revolutions). Recall14 that accuracy is the fraction of correct
predictions out of all. Definition 26 lets us thus reformulate it for the third time:

α =

C∑
c=1

TPc

C∑
c=1

(TPc+FPc)

Metrics based on true/false positives/negatives have the advantage of yielding a class-
wise score. This allows for fine-grained insight into the model’s prediction behavior.
They achieve class-specificity by evaluating the predictions of a class in a one-vs-rest
fashion. In the same vein, we can define a per-class version of accuracy as well.

Definition 29 (Class Accuracy). The accuracy of f̂θ on class c ∈ {1, . . . , C} is:

αc := TPc+TNc

TPc+TNc+FPc+FNc

14Yes, pun intended.
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We know from Example 3 that accuracy is highly sensitive to imbalanced label distri-
butions and thus easily misleading when the imbalance is not taken into account. For
its class-wise version, this holds just as well. Furthermore, precision and recall are not
immune from this behavior either.

Example 4 (Precision and Recall Pathology). On D := {(1, 1), (2, 2), (3, 2)}, the con-
stant classifier f̂θ : R → {1, 2},x → 1 has recalls ρ1 = 100%, ρ2 = 0% and precisions
π1 ≈ 33%, π2 = 100%.

Intuitively, recall rewards overconfidence in a class decision while precision rewards
careful decisions. Example 4 hints at two remedies for making the metrics more robust:
Combining precision and recall into a single metric, and integrating class-wise metrics
to construct a summary metric. The first option can be implemented with a simple
harmonic mean.

Definition 30 (F1 Score). The F1 score of f̂θ on class c ∈ {1, . . . , C} is defined as:

F1c := 2
1
πc

+ 1
ρc

=

(
π−1
c + ρ−1

c

2

)−1

Note that an arithmetic average would not be appropriate since precision and recall
do not share the same denominator but the same numerator! Through averaging, the
F1 score provides a more equilibrated performance summary. To address the second
remedy from above, we need to combine the metrics across classes. To this end, two
major strategies exist.

Definition 31 (Macro Averaging). Themacro precision,macro recall andmacro F1 score
of f̂θ are respectively given by:

πM := 1

C

C∑
c=1

πc, ρM := 1

C

C∑
c=1

ρc, F1M := 2
1

πM
+ 1

ρM

Clearly, macro averaging admits of equal importance for all classes, regardless of their
relative appearance in the dataset. In contrast, the second approach scales the individ-
ual classes’ contribution according to their prevalence.

Definition 32 (Micro Averaging). The micro precision, micro recall and micro F1 score
of f̂θ are respectively given by:

πµ :=

C∑
c=1

TPc

C∑
c=1

(TPc+FPc)

, ρµ :=

C∑
c=1

TPc

C∑
c=1

(TPc+FNc)

, F1µ := 2
1
πµ

+ 1
ρµ
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Despite having the more complicated definition, micro averaged metrics surprisingly
do not constitute new performance measures. Quite the opposite: They are equivalent
to the simplest measure that we encountered.

Theorem 5 (Micro Averaging = Accuracy). Micro F1, micro precision, micro recall
and accuracy of f̂θ are all equal:

F1µ = πµ = ρµ = α

Proof. ComparingDefinition 32withRemark 10, we immediately get πµ = α. Motivated
by the observation that any false positive for one class is exactly one false negative for
another class and vice versa, we further obtain:

C∑
c=1

FPc =
C∑
c=1

∑
i 6=c

Cic =
∑
i 6=j

Cij =
C∑
c=1

∑
i 6=c

Cci =
C∑
c=1

FNc

Substituting this in Definition 32 shows ρµ = πµ = α. Hence also

F1µ =
2

1
α + 1

α

= α .

Thereby macro F1 remains as the most robust evaluation metric of those discussed.
However, we remark that Theorem 5 only holds in the case of single-label classification,
whichwe considered in thiswhole Section. Whenwe allowmultiple labels for a sample,
micro averages get to play their role aswell. Furthermore, we note the existence ofmany
further, yet less common, metrics. Worth mentioning are general F-scores, which our F1
is a special case of, specificity and sensitivity arising from the confusion matrix, as well
as the more involved Cohen’s Kappa.

X
This concludes our journey through the mathematical foundations of deep learning.
Understanding the main part of this thesis should now be obstacle-free.
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