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Abstract

The need to find shortest paths in a graph from some fixed source vertex to all
other vertices is quite obvious and therefore one of the most important problems in
graph theory. For general graphs, the standard way to go is the Dijkstra algorithm.
On planar graphs, this approach takes linearithmic time in the number of vertices.
However, we present an algorithm published byHenzinger et al. in 1997 [HKRS97]
that accomplishes the task in linear time on planar graphs.

1 Introduction

Let G = (V,E) be a directed planar graph. By convention, we set n := |V | andm := |E|.
Furthermore, we are given

• nonnegative edge weights $ : E → R≥0 and
• an arbitrary but fixed source vertex s ∈ V

Our goal is to find a vertex vector d ∈ RV≥0 with the property that d[v] is the length of
a shortest path in G with respect to $ from s to v for all vertices v ∈ V . A well-known
technique used for this is called relaxation:
Definition 1 (Relaxation). An edge uv ∈ E is relaxed if d[v] ≤ d[u] + $(uv), otherwise
we say it is tense. To relax an edge means updating d[v] := d[u] + $(uv) if uv is tense.

Dijkstra’s Algorithm uses this technique in such a way that every edge is relaxed
at most once and afterwards the labels in d are correct. Using priority queues imple-
mented by min-heaps, the algorithm achieves a worst-case running time of

O((n+m) log(n)) ⊆ O(n log(n))

on planar graphs.1 However, the Dijkstra algorithm always performs operations on a
priority queue of size Θ(n), resulting in a queuing cost of Θ(log(n)). We will see that
the asymptotic runtime can be significantly improved by subdividing the graph G into
smaller parts and assigning priority queues to each portion of the graph. This way
we need to perform operations on multiple priority queues but with far smaller size!
Thanks to this, the resulting algorithm will run in time O(n).

1Planarity requiresm ≤ 3n− 6 due to Euler’s Polyhedron Formula.
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2 Prerequisites

Dividing the input graph randomly will not take us very far. Rather, we need certain
properties to hold which are formalized by the concept of an r-division.
Definition 2 (r-division). For r ∈ N>0, an r-division of a graphG = (V,E) is a partition
of E into disjoint regions E = R1 ∪· R2 ∪· . . . ∪· Rs where
(R1) all regions have size |Ri| ≤ r
(R2) the number of regions is s ∈ O(mr )

(R3) each region’s boundary size is |∂G(Ri)| ∈ O(
√
r)

The boundary of a region R consists of all vertices that are incident to edges within R
but also connect to edges in at least one other region:

∂G(R) := {v ∈ V | ∃u,w ∈ V : uv ∈ R, vw ∈ E \R} .

It is important that we are not fooled by the terminology of a "region" into assuming
that the regions resulting from an r-division are always connected.
Remark 3 (Connectedness). The regions forming an r-division are not required to be
connected. However, property (R3) ensures that region boundaries do not become too
big, as it incents the regions to have as many inner vertices as possible. Thus, thinking
intuitively about the regions as somewhat connected is indeed appropriate.

As shown byHenzinger et al. [HKRS97], running a kind of "distributed Dijkstra" on
the regions of a single r-division already improves the running time toO(n log(log(n))).
This naturally raises the question of whether dividing the graph further might lead
to even better performance and motivates the notion of a recursive division, which is
essentially a tree of divisions of G where the root is all of E and every division further
down the tree is made up of smaller regions until the leaves only consist of single edges
as illustrated in Figure 1.
Definition 4 (Recursive r-division). Let G = (V,E) be a nonempty graph, i.e. |E| ≥ 1,
and −→r = (r0, . . . , rp) ∈ Np+1 a vector of increasing integers 1 = r0 < r1 < · · · < rp = m.
The −→r -height of a region R ⊆ E shall be defined as

h(R) := min{i ∈ {0, . . . , p}
∣∣ |R| ≤ ri}

If h(R) = 0, the region R is called atomic. A recursive −→r -division of G is a tree R with
root E, whose children are defined recursively as follows:

• If p = 0, the root E has no children. It is atomic as r0 = 1 = rp.
• If p > 0, let R1, . . . , Rs ⊆ E form an rp−1-division of G. Then E has s children,

namely for each i = 1, . . . , s some recursive (r0, . . . , rh(Ri)−1, |Ri|)-division of the
subgraph induced by Ri constitutes a child of E.
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Figure 1: An examplatory recursive (1, 2, 4, 7)-division

We will use such a recursive division as the basis for our algorithm. Fortunately,
calculating it in a preprocessing step does not affect our linear-time ambitions at all,
thanks to the following theorem:
Theorem 5 (Goodrich, 1995). A recursive −→r -division of G can be computed in O(n) time.

Proof. See Goodrich [Goo95].

Therefore, we can from now on assume that the planar input graph G is already
equipped with some recursive −→r -divisionR. Furthermore, we assume without loss of
generality that for every vertex v ∈ V in G we have indeg(v) ≤ 2 and outdeg(v) ≤ 2.
This imposes no restriction, because every vertex violating the requirement can be split
into multiple "dummy" vertices connected by a cycle of edges with weight zero like in
Figure 2. However, wemust be careful not to enlargeG toomuch, but since it is a planar
graph, the average vertex degree can be at most 2m

n ≤
2(3n−6)

n = 6 − 12
n < 6 and hence

Gwill only grow by a constant factor through this process in the worst case, rendering
it completely irrelevant to the asymptotic running time.
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Figure 2: Splitting vertices to achieve small degrees
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3 The Algorithm

As mentioned earlier in Section 1, the algorithm is going to depend heavily on priority
queues as auxiliary data structure in a similar way that Dijkstra does. We require a
priority queue Q to support the following interface:

Operation Description
Q.minItem() ∈ R Returns the item in Qwith the minimum key.
Q.minKey() ∈ R≥0 Returns the key of the Q.minItem().
Q.setKey(x, k) ∈ B Updates the key of the item x ∈ Q to k ∈ R≥0.

Returns whether the update causedQ.minKey() to decrease.

Table 1: Required operations of the priority queue data structure

Albeit, in contrast toDijkstra’s algorithm,wewill not use only a single priority queue
for the whole graph, but rather grant every region R ∈ R of the recursive −→r -division
an own priority queue QR obeying the following invariants:
(I1) If R is atomic, its queue QR = {uv} consists of precisely the single edge uv in R.

The key of uv in QR is either
• finite, in which case it must be equal to d[u], the distance label of the tail,

and we say the edge uv is active, or
• ∞, in which case uv is called inactive.

(I2) IfR is nonatomic,QR = {R1, . . . , Rs} contains its immediate subregionsRi ∈ R.
The key of each child region Ri in QR must be QRi .minKey().

The idea behind these somewhat nested priority queues is thatQR.minKey() represents
the minimum over the keys of all edges uv ∈ R. Formal evidence for this will be given
later by Corollary 12 (Queue Consistency).

With this, we are ready to formulate the algorithm: In essence, it performs a modi-
fied version of Dijkstra recursively on the regions ofR, though not exhaustively until all
edges within a region are relaxed, but only at most for a limited number of iterations.
This attention span is defined per level of R by parameters α0, α1 . . . , αp, the values of
which will be specified in Section 5.3

The algorithm consists of three procedures. Procedure 1 is the top-level procedure
and initializes the graph similarly to Dijkstra, except it also has to take care of the keys
in the priority queues. Afterwards it resorts to calling the main procedure on the whole
graph until all edges are inactive.

Procedure 2 is responsible for updating some key in a priority queue and informing
the parent queue about this event, as it might need to update the child region’s key
accordingly in order to maintain the invariant (I2).

Procedure 3 does the actual work of relaxing edges within a region for a limited
amount αh(R) of iterations, as sketched before. If an invocation of process is not able
to execute the full αh(R) iterations because there are no more active edges in the region
left, we call the invocation truncated.
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/* calculates shortest path lengths */
sssp(s ∈ V : source):

1 foreach v ∈ V :
2 d[v] :=∞
3 foreach R ∈ R, x ∈ QR :
4 QR.setKey(x,∞)

5 d[s] := 0
6 foreach sv ∈ E : // outgoing edges
7 update({sv}, sv, 0)

8 while QE .minKey() 6=∞ :
9 process(E)

Procedure 1: The entry point to the algorithm

/* updates the given item with the provided
key and propagates it upwards */

update(R ∈ R : region, x ∈ QR : item, k ∈ R≥0 : key):
1 if QR.setKey(x, k) : // QR.minKey() reduced
2 update(R.parent, R, k)

Procedure 2: The useful key update helper

/* performs some work in the given region
for
a limited "attention span" */

process(R ∈ R : region):
1 if R = {uv} ⊆ E : // R is atomic
2 if d[u] + $(uv) < d[v] :
3 d[v] := d[u] + $(uv)
4 foreach vw ∈ E : // outgoing edges
5 update({vw}, vw, d[v])

6 QR.setKey(uv,∞) // deactivate edge
7 else : // R is nonatomic
8 repeat αh(R) times or untilQR.minKey() =∞ :
9 R′ := QR.minItem()
10 process(R′)
11 QR.setKey(R′, QR′ .minKey())

Procedure 3: The main workhorse

5
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Limiting the number of iterations in process is necessary for the following reason:
Assume we have relaxed all edges in some region R ∈ R and are currently working
on another region R′ ∈ R as we relax an ingoing edge uv ∈ E of a boundary vertex v
between R′ and R. Because of line 5, we activate its outgoing edges vw ∈ E, some of
which are part of R that we thought to have already finished! Thus, work done within
a region is only speculative and we do not want to be biased too much towards that
region. The event is so significant that we introduce some new terminology:
Definition 6 (Entry Vertex). A boundary vertex of a region is called an entry vertex if it
has an outgoing edge into that region. More formally, a vertex u ∈ V is an entry vertex
of a region R ∈ R iff u ∈ {v ∈ ∂G(R) | ∃vw ∈ R}. As the root region E has an empty
boundary, we additionally define the source s to be the only entry vertex of E.

If in the situation described above updating the key of vw ∈ R results in decreasing
QR.minKey(), we refer to this as foreign intrusion of R via entry vertex v. Note that the
reduction of the distance label of some entry vertex is the only way a foreign intrusion
can happen. The following two observations will be highly relevant to the analysis.
Lemma 7 (Dumping). Let R ∈ R be a region and v an entry vertex of R. If there are two
foreign intrusions of R via v at times t1 < t2, then QR.minKey()|t1 > QR.minKey()|t2 .

Proof. A foreign intrusion is only possible through the activation of outgoing edges of
an entry vertex v in line 5 of process, which because of line 2 however only occurs if
d[v] decreases in the first place, so it is smaller at time t2 than at t1.

Remark 8 (Foreign Intrusion). LetR ∈ R be a region. IfQR.minKey() decreases at any
point throughout the algorithm, this is due to a foreign intrusion into R.

Proof. The only point where QR.minKey() can decrease is line 1 of update through up-
dating an edge vw ∈ R. If no foreign intrusion were responsible for this, then v would
be no entry vertex ofR and thus the edge uv, the relaxation ofwhichwas responsible for
the call to update, would belong to R. Since uv has been selected in line 10 of process,
at that time QR.minKey() = d[u], as will be shown in Corollary 12, and therefore

QR.getKey(vw) = d[v] = d[u] + $(uv) ≥ QR.minKey()

which clearly is a contradiction.  

The direct implication of this insight is that a chain of recursive update calls in line 5
on regions R0 ⊆ R1 ⊆ R2 ⊆ · · · ∈ R ends as soon as the region in question contains the
edge uv having originally issued these calls, which we depict in Figure 3.
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Figure 3: A foreign intrusion stops being one higher up in the recursive division tree
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4 Correctness

Let δ : V × V → R≥0 be the true shortest path lengths in G. To show that the algorithm
works correctly, we need three properties to hold at termination:
(C1) d[s] = 0

(C2) ∀v ∈ V : d[v] ≥ δ(s, v)

(C3) ∀uv ∈ E : d[v] ≤ d[u] + $(uv)

If these are satisfied, then d[v] = δ(s, v) for all v ∈ V . That the first two properties are
satisfied is pretty clear from the algorithm. The third one will be proven in two steps:
First we show that, if an edge is inactive, then it is relaxed, and second that in the end
all edges are inactive, which yields (C3). The first step is resolved quickly:
Lemma 9 (Relaxation). Let uv ∈ E be an edge. Then

uv is inactive⇒ uv is relaxed

Proof. This is trivially true initially, as labels and keys are∞. Just before the first call to
process in line 9 of sssp this still holds as only the outgoing edges of s are unrelaxed,
but also active thanks to the update call in line 7 of sssp. Later on the algorithm only
deactivates an edge uv ∈ E in line 6 of process just after having made sure it is relaxed.

On the other hand, a relaxed edge vw ∈ E can only become tense if the label d[v] of
the tail v decreases in line 3 of process. However, immediately afterwards in line 5 of
process an update is performed for each outgoing edge, including vw, leading it to be
activated again by line 1 of update.

Now we turn to the second step, for which we prior need to finally prove that the
two invariants (I1) and (I2) the algorithm relies on are maintained.
Lemma 10 (Key Invariant). The key k of an active edge uv ∈ E satisfies k = d[u] <∞.

Proof. Initially all edges are inactive. An edge vw ∈ E becomes only active due to line 1
of update, namely by setting its key precisely to the finite value d[v] if we consider the
calls to update in line 7 of sssp and line 5 of process.

Lemma 11 (Queue Invariant). For any non-root region R ∈ R that is not an ancestor of the
currently processed region,

QR.parent.getKey(R) = QR.minKey()

Proof. Initially, this holds trivially as all keys are ∞. Whenever the minimum key of
a queue is decreased in line 1 of update, the subsequent recursive call on the parent
guarantees that the equality is preserved. Furthermore, when an edge is deactivated in
line 6 of process, this is accounted for in line 11 of process, which in turn accounts for
its own update inductively on higher levels.

With these in tow, we can now show that the priority queues are indeed consistently
behaving in the way we have expected them to all the time. This is particularly relevant
when deciding which region to select next in line 10 of process.
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Corollary 12 (Queue Consistency). For any region R ∈ R that is not an ancestor of the
currently processed region,

QR.minKey() = min{d[u] : uv ∈ R active}

Proof. Induction on the height of R:
• If h(R) = 0, then R = {uv} ⊆ E is atomic.

– If uv is inactive, then QR.minKey() =∞ = min ∅ trivially.
– If uv is active, then QR.minKey() = d[u] = min{d[u]} by Lemma 10.

• If h(R) > 0, then R has children R1, R2, . . . , Rs ∈ R and
QR.minKey() = min

i
{QR.getKey(Ri)}

= min
i
{QRi .minKey()}

= min
i
{min{d[u] : uv ∈ Ri active}}

= min{d[u] : uv ∈ R active}

using Lemma 11 (Queue Invariant) and the induction hypothesis.

Now that we have proven the parts of our two-step strategy separately, we simply
put it all together to show property (C3). This concludes the correctness proof.
Corollary 13. At termination, all edges are relaxed.

Proof. The algorithm terminates when the condition in line 8 of sssp is false, which
means according to Corollary 12 (Queue Consistency) that

∞ = QE .minKey() = min{d[u] : uv ∈ E active}
which yields using Lemma 10 (Key Invariant) that there are no active edges, so all edges
are inactive, and therefore by Lemma 9 (Relaxation) all edges are relaxed.

5 Complexity

Being reassured that the algorithm indeed is working correctly, we now turn towards
determining its time complexity. After all, we have promised a linear running time in
Section 1, so we need to substantiate this claim now.

5.1 Accounting Scheme

For the purpose of analyzing the running time of the algorithm, we augment the two
core procedures process and update to track the total computational cost throughout
execution. The underlying idea is to eventually charge all arising worst-case queuing
time to accounts (R, v) where R ∈ R is a region and v an entry vertex of R.

Procedure 4, the modified version of update, has two additional tasks: The first one
is to accumulate the cost incurred by a call of update, including potential descendant
invocations. This is done by estimating log |QR| in line 0.5 as worst-case queueing cost
for line 1 and, if executed, adding the cost returned by the recursive call in line 2. This
accumulated cost is then returned in line 2.5 to provide it to the caller.

8
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The second task of themodified update is just as important: Keeping track of foreign
intrusions! For this, we add an additional array entry indexed by regionsR ∈ R. When-
ever the reduction of the distance label d[v] in line 3 of process causes QR.minKey() to
decrease, entry[R] is set to v in line 1.5, aswe knowbyRemark 8 (Foreign Intrusion) that
in this case vmust be an entry vertex ofR. Furthermore, the only way forQR.minKey()
to become finite is via foreign intrusion, wherefore we are guaranteed that at any time
where QR.minKey() is finite, the entry entry[R] is well-defined. In particular, it is the
entry vertex of the last foreign intrusion into R.

//
update(R ∈ R : region, x ∈ QR : item, k ∈ R≥0 : key,

v ∈ V : potential entry vertex of R):
0.5 cost := log |QR|
1 if QR.setKey(x, k) : // QR.minKey() reduced

1.5 entry[R] := v
2 cost += update(R.parent, R, k, v)

2.5 return cost

Procedure 4: The modified update code tracking cost and foreign intrusions

While having an eye on its queueing operations as well, procedure 5, the modified
version of process, is essentially responsible for bookkeeping of cost amounts that can
be thought of as debt obligations. These travel up and down the tree of recursive process
invocations until at some point being charged to an account. In order to accomplish this,
an invocation of the modified process receives an extra argument debt that is meant to
be a portion of the debt of ancestor invocations and will be referred to as inherited debt.
Henceforth, let R ∈ R be the region of the invocation.

IfR is atomic, the debt is incremented in line 6.5 by 1 for the setKey operation on the
singleton priority queue in line 6 and, if executed, for each update call in line 5 increased
by the cost it returns.

If R is nonatomic, the invocation will share its debt among the children, of which it
expects to have αh(R). Thus, in line 10 each child invocation receives in its arguments

• a 1
αh(R)

fraction of the debt inherited by the parent plus

• a cost of log |QR| for selecting the child’s region in line 9.
Using the variable credit, the parent invocation tracks the amount of debt passed on
to its children via line 9.5. If the invocation calls αh(R) children, we have credit = debt.
Otherwise, the invocation is truncated and some debt remains.

Debts are not only passed down in the tree of process invocations, but also bubble
upwards through return values. The parent invocation combines

• the accumulated debt received from its child invocations (upDebt) and
• the amount of inherited debt not covered by a credit (debt− credit)

to determine the updated debt in line 11.1 after the recursive subcalls. This ensures that
the balance is correct again also in the case of a truncated execution. Hence we know
that, for the last part of the modified procedure, debt contains the true final debt of the
current invocation.

9
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//
process(R ∈ R : region, debt ∈ N : inherited debt):

1 if R = {uv} ⊆ E : // R is atomic
2 if d[u] + $(uv) < d[v] :
3 d[v] := d[u] + $(uv)
4 foreach vw ∈ E : // outgoing edges
5 debt += update({vw}, vw, d[v], v)

6 QR.setKey(uv,∞) // deactivate edge
6.5 debt += 1
7 else : // R is nonatomic

7.3 credit := 0 // debt passed to children
7.7 upDebt := 0 // debt received from children
8 repeat αh(R) times or until QR.minKey() =∞ :
9 R′ := QR.minItem()

9.5 credit += debt / αh(R)
10 upDebt += process(R′, debt / αh(R) + log |QR|)
11 QR.setKey(R′, QR′ .minKey())

11.1 debt := upDebt + (debt− credit)
11.2 if QR.minKey() will decrease in the future :
11.3 return debt
11.4 else : // this invocation is stable
11.5 pay off debt from account (R, entry[R])
11.6 return 0

Procedure 5: The modified process code managing debt obligations

To describe the behavior at the end of procedure 5, we need to differentiate process
invocations based on a key property that we discuss next. For invocations A and B
of process we write A ≤ B if both process the same region and either A = B or the
invocation A occurs before B, in which case we also write A < B.
Definition 14 (Stability). LetA be an invocation of process on a regionR ∈ R. Define:

• .(A) is the value of QR.minKey() just before the start of A.
• �(A) is the value of QR.minKey() just after the end of A.

We call A stable if for all later invocations B > Awe have .(A) ≤ .(B).
This notion of stability now determines whether the invocation simply returns the

updated debt to its parent in line 11.3 or rather pays off the debt itself by withdrawing
from the account (R, entry[R]) in line 11.5. Ensuring that this payoff does not get out
of hand is the concern of the next section.

5.2 Bounding Payoff

Our main goal for this section is to bound the usage of the accounts computational
cost is charged to during the modified algorithm. This will be rather technical and not
required for understanding the main argumentation, so feel free to skip this part and
only take note of the central result, which is Theorem 17 (Payoff).
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First, we prove an analogon to the fact that Dijkstra’s algorithm assigns vertex labels
in nondecreasing order. It is clear that this cannot hold for our algorithm as a whole,
because foreign intrusions are a violation of monotonous assignment. However, it is at
least true for the execution of process on a particular region.
Lemma 15 (Rising Keys). For any invocation A of process with children A1, A2, . . . , As,

.(A) ≤ .(A1) ≤ .(A2) ≤ · · · ≤ .(As) ≤ �(A)

In addition, every key assigned during A is no less than .(A).

Proof. Induction on the height of R.
• If h(R) = 0, then A processes an atomic region {uv} ⊆ E. Hence, .(A) = d[u]

and �(A) =∞. The only key assigned is d[u] + $(uv) ≥ .(A).
• If h(R) > 0, then A processes a nonatomic region R ∈ R. For i = 1, 2, . . . , s let
ki be the value of QR.minKey() when Ai is invoked and ks+1 its value when As
returns. Line 10 of process ensures ki = .(Ai) for i ≤ s. Using the inductive
hypothesis, each key assigned during Ai is at least .(Ai). Thus we have ki ≤ ki+1
by Corollary 12 (Queue Consistency) and altogether

.(A) = k1 ≤ k2 ≤ · · · ≤ ks ≤ ks+1 = �(A)

Observing also line 11 of process, keys assigned during A are at least .(A).

Therewith, we can show the following helper lemma which appears rather specific,
because it is the immediate groundwork for proving Theorem 17.
Lemma 16 (Children Stability). Let A < B be invocations of process on R ∈ R such that

(1) no foreign intrusion of R occurs between A and B

(2) the later invocation B is stable

Then every child of A is stable.

Proof. Let A′ be a child of A and C ′ an invocation with A′ < C ′. We need to show:

.(A′) ≤ .(C ′)

For this, we consider the parent invocation C of C ′:
• If C = A, then .(A′) ≤ .(C ′) by Lemma 15 (Rising Keys).
• If C > A, then .(A′) ≤ �(A) and also .(C) ≤ .(C ′) by Lemma 15 (Rising Keys).

Thus, it suffices to show that �(A) ≤ .(C).
– If C ≤ B, then no foreign intrusion of R occurs between A and C, wherefore
we get �(A) ≤ .(C) by Remark 8 (Foreign Intrusion).

– If C > B, then clearly �(A) ≤ .(B) by Remark 8 (Foreign Intrusion) and
.(B) ≤ .(C) by the stability of B, yielding �(A) ≤ .(C).

Here is our desired statement on how often accounts are overdrawn: At most once!
It cannot be overstated how crucial this circumstance will be for estimating the overall
running time later on.
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Theorem 17 (Payoff). Let R ∈ R be a region and v an entry vertex of R. The account (R, v)
is charged with a positive amount at most once.

Proof. If (R, v) is never charged to, this trivially holds. Otherwise let A be the earliest
invocation paying off a positive amount from (R, v). Then R must be the region pro-
cessed by A, vertex v must be the value of entry[A] at termination time of A and, most
importantly, Amust be stable. Let t1 be the last time before Awhere entry[R] was set.

Assume for a contradiction that there exists an invocation B > A that also charges
a positive amount to (R, v). Then v must also be the value of entry[R] at termination
time of B and B must be stable. Let t2 be the last time before B that entry[R] was set.

• If t2 > t1, then by Lemma 7 (Dumping)

QR.minKey()|t2 < QR.minKey()|t1 ≤ .(A)

although A is stable.  
• If t2 = t1, then there are no foreign intrusions between A and B. This means by

Lemma 16 (Children Stability) that every child ofA is stable and returns zero debt
in line 11.6 of process, so upDebt = 0 at termination time of A.

– If A is truncated, then �(A) =∞ and by Remark 8 thus .(B) =∞.  
– If A is not truncated, then debt = credit in line 11.1 of process and A pays

off zero in line 11.5, which is not positive.  
Therefore, no such B > A exists.

5.3 Parameter Juggling

The total computational cost depends on two factors:
• The region size limits −→r = (r0, . . . , rp) of the recursive −→r -division.
• The attention spans α1, . . . , αp for the levels ofR.

For now, define the latter in terms of the former:

αi := 4 log(ri+1)
3 log(ri)

, (1)

where we set rp+1 := 16rp
1
6 , the choice of which will become apparent later on. With

this, we can more concretely describe debt in the modified process procedure:
Lemma 18 (InheritedDebt). Aheight-i process invocation inherits at most 4 log(ri+1) debt.

Proof. Reverse induction on i.
• If i = p, then the invocation inherits no debt.
• If i < p, then the invocation inherits nomore than 4 log(ri+1) debt by the inductive

hypothesis and in line 10 calls each child with a debt of at most
4 log(ri+1)

αi
+ log(ri) = 3 log(ri) + log(ri) = 4 log(ri)

using the definition of αi in (1).
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Figure 4: Combinatorially counting descendant invocations

To estimate the overall debt, we need to also bound the number of child invocations
of a given invocation. Here is where the attention spans play a key role: Consider an
invocation of process at height i. It can have at most αi child invocations at height i−1,
exactly αi if it is not truncated. Every child can in turn call at most αi−1 further children
itself, each ofwhich has atmostαi−2 children and so on. This combinatorial argument is
illustrated in Figure 4 and leads to the definition of the following shorthand, signifying
the maximum number of height-j descendant invocations that any height-i invocation
of process can possibly have:

βij :=
{
αiαi−1 . . . αj+1 if i ≥ j
0 otherwise

Putting together all we found until here, a first expression for theworst-case amount
of overall debt emerging throughout the modified algorithm is possible.
Lemma 19 (Preliminary process Debt). The total debt incurred by process invocations is

O
( p∑
i=0

m
√
ri

∑
j≤i

βij · 4 log(rj+1)
)

(2)

Proof. First, we make sure that all debt incurred by process invocations is eventually
charged to accounts. The region of a root process call is all of E, where no foreign
intrusions can occur into. Therefore, every invocation of height p is stable and pays off
any potentially remaining debt.

Next, consider some account (R, v) where R is a height-i region and v a boundary
vertex of R. By Theorem 17 (Payoff), this account is paid off a positive amount with at
most once. Let A be the corresponding invocation. The withdrawn debt consists only
of the debt returned by child invocations of A and so we need to take into account all
descendant invocations ofA, whereof there are at most βij many. Each such descendant
at height j inherits at most 4 log(rj+1) debt by Lemma 18 (Inherited Debt) and hence
the maximum debt paid off with (R, v) is given by∑

j≤i
βij · 4 log(rj+1)

Finally, we simply need to count all accounts, inwhichwe are aided by the properties
of r-divisions. We know by property (R2) that there are O( ri+1

ri
) ⊆ O(mri

) regions of
height i, each ofwhich has by (R3) a boundary size inO(√ri), yielding a total boundary
size at height i of at most O(mri

) · O(√ri) = O( m√
ri

), which constitutes an upper bound
on the number of entry vertices on level i. Summing over all levels gives us (2).

13



14 5 COMPLEXITY

A similar result can be achieved for the procedure update, the proof of which is
rather involved and not shown here. Instead, we refer to the literature.
Lemma 20 (Preliminary update Debt). The total debt incurred by update invocations is

O
( p∑
i=0

m
√
ri
βi0

∑
k≤i+1

log(rk) +
p∑
j=0

2 m
√
rj

∑
i<j

√
riβi0

∑
k≤j+1

log(rk)
)

Proof. See Klein and Mozes [KM11].

An end is in sight! The only unknowns left are the region sizes −→r = (r0, r1, . . . , rp)
that we are at this point finally going to define recursively as

• r0 := 1

• rj+1 := 16r
1
6
j

Intuitively speaking, from the leaves upwards regions shall grow exponentially. Having
resolved this last missing piece, we are able to finalize our debt estimations. Again, we
will only prove the result for process and cite that for update.
Lemma 21 (Final processDebt). The total debt incurred by invocations of process isO(m).

Proof. It is not too difficult to show that r
1
6
j ≥ 1.78j for j ≥ 7. The underlying analytical

calculations are carried out by Klein and Mozes [KM11], so we take it as a given here.
Using this, we continue bounding expression (2) for process:

O
( p∑
i=0

m
√
ri

∑
j≤i

βij · 4 log(rj+1)
)resolve βij

↓= O
( p∑
i=0

m
√
ri

∑
j≤i

(4
3
)i−j log(ri+1)

log(rj+1) · 4 log(rj+1)
)

= O
(
4m

p∑
i=0

r
− 1

2
i

∑
j≤i

(4
3
)i−j

log(ri+1)
)

⊆ O
(
4m

p∑
i=0

r
− 1

2
i (i+ 1)

(4
3
)i

log(ri+1)
)

= O
(
8pm

p∑
i=0

r
− 1

2
i

(4
3
)i

4r
1
6
i

)
= O

(
32pm

p∑
i=0

r
− 1

3
i

(4
3
)i)

r
1
6
j ≥ 1.78j

↓
⊆ O

(
32pm

p∑
i=0

(
4
3

)i
1.782i

)
⊆ O

(
32pm

∞∑
i=0

0.5i
)

geom. Σ
↓= O(64pm) = O(m)

Lemma 22 (Final update Debt). The total debt incurred by invocations of update is O(m).

Proof. See Klein and Mozes [KM11].
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This concludes the time complexity analysis. Inferring that the overall running time
is linear constitutes merely a formality, but let us deservedly state it anyway.
Theorem 23. The algorithm sssp runs in O(n) time.

Proof. As remarked earlier, the input preprocessing steps can be executed inO(n) time.
The total computational cost without preprocessing is

O(m) +O(m) = O(2m) = O(m) ⊆ O(3n− 6) = O(n)

and therefore linear in the size of the planar input graph G.

6 Summary

By successively subdividing the planar input graph into smaller and smaller regions in
a clever way, we have managed to build an algorithm that finds single-source shortest
paths on the graph in linear time. This is possible because most of the priority queue
operations involved are performed on rather small queues. The algorithm shows that
the SSSP problem on planar graphs can be solved with an asymptotically optimal time
complexity, a significant theoretical result!

However, since the algorithm was published in 1997 there has apparently not been
a single real implementation. The suspicion arises that it is not practicable despite its
linear running time for the following reason: We simply took it as a given that the pre-
processing step for computing a recursive−→r -division is possible in timeO(n), however
this itself already involves heavy machinery incurring a high implicit constant in front
of the n. Moreover, our algorithm is not exactly economical in the amount of priority
queues it handles and does not in any way optimize their use like established versions
of the Dijkstra algorithm do, which increases the implicit constant even further.

We therefore conjecture that it takes an impractically large input graph for our al-
gorithm with O(n) time and big constant to outperform a highly-optimized Dijkstra
variant withO(n log(n)) time but extremely small constant. That nevertheless does not
change the theoretical value of this algorithm and the neat concepts it utilizes.
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