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Abstract

Due to climate change, riverine floods have become increasingly common.
Forecasting them requires accurate discharge predictions. In this regard,
deep learning methods recently started outperforming classical hydrolog-
ical modeling techniques based on differential equations. The current
state-the-art approaches treat forecasting at spatially distributed gauge
stations as isolated problems. However, incorporating the known river
network topology into the model has the potential to leverage the physical
relationships between stations. Thus, we propose modeling river discharge
for a network of gauging stations with a Graph Neural Network (GNN).
To assess the benefit of relating stations to each other, we compare the
forecasting performance achieved by different adjacency definitions: no
adjacency at all, which is equivalent to existing approaches; binary adja-
cency of nearest up-/downstream stations; weighted adjacency according
to physical relationships like stream length between stations; and learned
adjacency via joint parameterization. Our results show that the model
does not benefit from the river network topology information, regardless of
the number of layers. The learned edge weights correlate with neither of
the static definitions and exhibit no regular pattern. Furthermore, a worst-
case analysis shows that the GNN struggles to predict sudden discharge
spikes. In employing the Gradient Flow Framework (GRAFF), we find that
parameter sharing across layers does not hurt model performance and that
a mixture of attractive and repulsive forces act on vertex representations
in the latent space of the GNN.
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Chapter

Introduction 1
Floods are one of the most destructive natural disasters that occur on Earth, causing
extensive damage to infrastructure, property, and human life. They account for almost
half of all disaster events recorded by the United Nations (UNDRR & CRED, 2015, cp.
Figure 1.1), making them the predominant type of disaster. In 2022 alone, 176 floods
were recorded worldwide, which affected 57.1 million people, killed almost 8000, and
caused 44.9 billion USD in damages (CRED, 2022). Due to ongoing climate change,
floods have become increasingly frequent over the past decades and are expected to
be even more prevalent in the future (UNDRR, 2022). Thus, early warning systems
that can help authorities and individuals prepare for and respond to impending floods
play a crucial role in mitigating fatalities and economic costs.

Operational flood forecasting systems like Google’s Flood Forecasting Initiative (Nevo
et al., 2022) typically focus on riverine floods as they are by far the most common and
responsible for the vast majority of damages. A key component in these systems is
the prediction of future river discharge† at a gauging station based on environmental
indicators such as past discharge and precipitation.

Figure 1.1: Share of occurrence of natural disasters by disaster type.
Floods lead the ranking by a wide margin. (UNDRR & CRED, 2015).

†Discharge is the amount of water volume passing through a given river section per unit time.
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Classical approaches toward river discharge prediction stem from finite-element solu-
tions to partial differential equations such as the Saint-Venant shallow-water equations
(Vreugdenhil, 1994; Wu, 2007). However, these models suffer from scalability issues
since they become computationally prohibitive on larger scales, as required in the
real world (Nevo et al., 2020). Furthermore, they impose a strong inductive bias by
making numerous assumptions about the underlying physics.

On the other hand, data-driven methods and in particular deep learning provide
excellent scaling properties and are less inductively biased. They are increasingly being
explored for a plethora of hydrological applications, including discharge prediction (see
surveys by Mosavi et al., 2018; Chang et al., 2019; Sit et al., 2020), where they tend to
achieve higher accuracy than the classical models. The vast majority of studies employ
Long Short-Term Memory models (LSTM; Hochreiter & Schmidhuber, 1997) due to
their inherent suitability for sequential tasks and reliability in predicting extreme
events (Frame et al., 2022). Whereas these studies usually consider forecasting for a
single gauging station, Kratzert et al. (2019a,b) demonstrate the benefit of training
a single spatially distributed LSTM model on multiple gauging sites jointly. While
exploiting the shared underlying physics across gauges, their approach is still agnostic
to the relationship between sites.

It appears reasonable that incorporating information from neighboring stations or even
an entire river network like the one in Figure 1.2 into a spatially distributed model may
be beneficial. Upstream gauges could “announce” the advent of significantly increased
water masses to downstream gauges, which in turn could provide forewarning about
flooding already ongoing further downstream. The input then becomes a graph whose
vertices represent gauges and edges represent flow between gauges. The corresponding
deep learning tool to capture these spatial dependencies is Graph Neural Networks
(GNN). Kratzert et al. (2021) employ such a GNN as a post-processing step to route
the per-gauge discharge predicted by a conventional LSTM along the river network,
but it does not perform the actual prediction.

Figure 1.2: A river network with gauges depicted in green (Kratzert et al., 2021).
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In this thesis, we propose to model discharge in a river network by a single end-to-end
GNN to allow the network structure to be utilized during the prediction process itself.
We train GNNs on the extensive Danube river network (Klingler et al., 2021) and, to
assess the merit of incorporating the graph structure, compare the effect of different
adjacency definitions:

(1) no adjacency, which is equivalent to existing approaches with shared parameters
but isolated gauges,

(2) binary adjacency of neighboring gauges in the network,

(3) weighted adjacency according to physical relationships like stream length, eleva-
tion difference, and average slope between neighboring gauges, and

(4) learned adjacency by treating edge weights as a model parameter.

Furthermore, we explore the role of neural network depth on predictive capabilities.
To gain insight into the behavior of trained models, we produce recurrent forecasts for
the most challenging gauge and analyze the models using the recent Gradient Flow
Framework (Di Giovanni et al., 2022). Our source code is publicly available∗.

The thesis is structured as follows: Chapter 2 provides necessary mathematical
prerequisites on spectral graph theory and graph neural networks. Chapter 3 explains
our approach in depth, covering data preprocessing and the machine learning pipeline.
Chapter 4 reports and discusses our experimental results. Chapter 5 concludes the
thesis and provides an outlook on future work.

∗https://anonymous.4open.science/r/FloodGNN

https://anonymous.4open.science/r/FloodGNN


Chapter

Background 2
In this chapter, we outline the mathematical prerequisites relevant to our study. We
assume familiarity machine learning and deep learning fundamentals, for which we
refer the reader to the textbooks by Bishop (2006) and Goodfellow et al. (2016),
respectively. Section 2.1 highlights elements of spectral graph theory that we need,
and Section 2.2 explains the mechanics of graph neural networks.

Throughout the entire chapter, we consider a directed, weighted, and connected finite
graph G = (V , E) with n := |V| vertices and m := |E| edges. W.l.o.g., we write the
vertex set as V = {1, . . . , n} and edge set as E = w−1(R>0) based on a non-negative
weight assignment w : V ×V → R≥0 where w(i, j) = 0 indicates the absence of an edge
between i and j. Furthermore, we have a d-dimensional vertex signal X ∈ Rn×d given
as a stack of row vectors x⊤

i ∈ Rd. We make the following technical assumptions:

1. The graph is oriented, i.e., it does not contain bidirectional edges:

(i, j) ∈ E =⇒ (j, i) /∈ E .

2. The graph is simple, i.e., it does not contain self-loops:

(i, j) ∈ E =⇒ i ̸= j.

Note that conceptually, any undirected graph can be turned into an oriented one by
assigning an arbitrary orientation to each edge. In this vein, most results carry over
immediately to simple connected undirected graphs. We will remark on this in the
appropriate places.

2.1 Spectral Graph Theory

The area of spectral graph theory studies properties of graphs by representing them
as matrices. This is an essential prerequisite for performing calculations on a graph.
Before we start defining these matrices, we introduce some convenient notation.

Definition 1. Let i, j ∈ V be vertices. We write i→ j iff there is an edge from i to j,
i.e., (i, j) ∈ E .

Note that the relation → is never reflexive as G contains no self-loops, and never
symmetric as G is oriented.

The most straightforward way to represent G is as a lookup table of w.
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Definition 2. The adjacency matrix A ∈ Rn×n represents the weight assignment w:

Ai,j := w(i, j).

Remark 3. The transpose A⊤ represents the weight assignment with flipped edges
and A+A⊤ the weight assignment with bidirectional edges. Furthermore, note that
as G contains no self-loops, these matrices have an all-zero diagonal.

Example 4. For illustration purposes and to highlight a special case, the unweighted
graph on the left serves as a running example throughout this section. Its adjacency
matrix is shown on the right.

1

2

3

4

⇝ A =


0 1 1 0
0 0 1 0
0 0 0 0
1 0 1 0


The adjacency matrix encodes all information contained in the edges. Hence, many
properties of the graph can be directly obtained from it. When we sum up a row or
column of A, we get the total weight of incoming or outgoing edges, respectively.

Definition 5. Let i ∈ V be a vertex. We define

(a) the in-degree of i as the column sum di,in :=
∑

j:j→iw(j, i), and

(b) the out-degree of i as the row sum di,out :=
∑

j:i→j w(i, j).

As a shorthand, we can trivially pack the degree information into separate matrices.

Definition 6. The in-/out-degree matrix of G is the diagonal matrix of in-/out-degrees:

Din :=

d1,in . . .

dn,in

 , Dout :=

d1,out . . .

dn,out.


Example 7. In the setting of Example 4, we have

Din =


1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 0

 , Dout =


2 0 0 0
0 1 0 0
0 0 0 0
0 0 0 2

 .

An alternative and more subtle way of encoding the weight assignment is to construct
a non-square matrix that contains one row per edge, indicating the endpoints of
the associated edge. For row indexing, we implicitly use an arbitrary enumeration
E → {1, . . . ,m} of the edges.
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Definition 8. The incidence matrix ∇ ∈ Rm×n of G is given by

∇(i,j),k :=


−
√
w(i, j) if k = i,√
w(i, j) if k = j,

0 otherwise.

Example 9. For the graph in Example 4, the incidence matrix is

∇ =


−1 1 0 0
−1 0 1 0
0 −1 1 0
1 0 0 −1
0 0 1 −1

 .

Remark 10. The concept of an incidence matrix does not trivially carry over to
undirected graphs since it inherently requires a sense of direction on edges. Hence, an
incidence matrix of an undirected graph always depends on the chosen edge orientation
and is thus not unique.

It is crucial to realize that the rows of ∇ are indexed by the edges of G, not the vertices.
This means that, by virtue of matrix multiplication from the left, the incidence matrix
transforms a vertex signal into an edge signal.

Lemma 11. Let X ∈ Rn×d be a vertex signal. The product ∇X ∈ Rm×d is an edge
signal where each row is the weighted difference of the features of its endpoints:

(∇X)(i,j) =
√

w(i, j)(x⊤
j − x⊤

i ).

Proof. Consider the row-matrix product (∇X)(i,j) =
∑

k∈V ∇(i,j),k · x⊤
k .

The differences of neighboring features appearing in Lemma 11 can be interpreted as
a discrete derivative of the vertex signal X (Zhou & Schölkopf, 2005).

Definition 12. We call ∇X the graph gradient of X.

The graph gradient behaves analogously to the continuous gradient, which turns a
scalar field f : Rn → R into a vector field ∇f : Rn → Rn. Another key operator in
vector analysis is divergence, the adjoint operator of the gradient, which turns a vector
field g : Rn → Rn back into a scalar field div g : Rn → R by summing the rate of
change in each coordinate. We can define an analogous construct for graphs. Formally,
the graph divergence should be the adjoint operator of the graph gradient. Since the
incidence matrix represents a linear operator, this is just its transpose.

Lemma 13. Let Y ∈ Rm×d be an edge signal. The product ∇⊤Y ∈ Rn×d is a vertex
signal where each row measures the overall “flow” through the vertex:

(∇⊤Y)k =
∑
i:i→k

√
w(i, k)Y(i,k)︸ ︷︷ ︸
inflow from i

−
∑
j:k→j

√
w(k, j)Y(k,j)︸ ︷︷ ︸
outflow to j

.
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Proof. Consider the row-matrix product (∇⊤Y)k =
∑

(i,j)∈E ∇(i,j),kY(i,j).

Definition 14. We call ∇⊤Y the graph divergence of Y.

In vector analysis, the combination of gradient and divergence yields the well-known
Laplace operator ∆ = div∇. We immediately get the analogous construct on graphs
using the same definition.

Definition 15. The graph Laplacian matrix is given by

∆ := ∇⊤∇.

There is a more practicable expression that only involves matrix addition.

Lemma 16. The Laplacian can be explicitly written as

∆ = (Din +Dout)− (A+A⊤),

which means, since G contains no self-loops,

∆i,j =


di,in + di,out if i = j

−w(i, j) if i→ j

−w(j, i) if j → i

0 otherwise

(2.1)

Proof. Each entry of the product is an inner product between columns of ∇:

∆i,j = (∇⊤∇)i,j = ⟨∇:,i,∇:,j⟩ =



di,in + di,out if i = j,

−w(i, j) if i→ j and not j → i,

−w(j, i) if j → i and not i→ j,

−w(i, j)− w(j, i) if both i→ j and j → i,

0 otherwise.

Since the fourth case never occurs as G is oriented, this shows Equation (2.1).

Example 17. The Laplacian matrix of the graph in Example 4 is

∆ =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 3
−1 0 −1 2

 .

Remark 18. Note that while the incidence matrix depends on the orientation chosen
for an undirected graph, the Laplacian does not due to its symmetric definition with
respect to edge orientation. Therefore, the Laplacian of an undirected graph is unique.
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The graph Laplacian constitutes the main object of interest in spectral graph theory,
owing to the following observation.

Lemma 19. ∆ is symmetric positive semi-definite.

Proof. Symmetry follows from Definition 15 as

∆⊤ = (∇⊤∇)⊤ = ∇⊤(∇⊤)⊤ = ∆.

To see positive semi-definiteness, consider for any v ∈ Rn the quadratic form

v⊤∆v = (∇v)⊤∇v = ∥∇v∥2 ≥ 0.

Importantly for us, Lemma 19 implies via the spectral theorem that ∆ is orthogonally
diagonalizable and has only real non-negative eigenvalues, enabling the full toolbox of
spectral analysis. First of all, ∆ always has a zero eigenvalue since its rows sum up to
zero and thus any constant vector is in the null space. Furthermore, the multiplicity
of that eigenvalue gives the number of connected components in the graph (Chung,
1997). Generally speaking, the spectrum of ∆ yields a “fingerprint” of the graph
structure.

Of particular interest is the quadratic form defined by ∆, which for a normalized
vector v ∈ Rn equals the Rayleigh quotient known from numerical linear algebra.
Hence, if v is in addition an eigenvector of ∆ with eigenvalue λ, then

λ = v⊤λv = v⊤∆v = ∥∇v∥2 =
∑

(i,j)∈E

(∇v)2(i,j) =
∑

(i,j)∈E

w(i, j)(vi − vj)
2.

Therefore, λ indicates the smoothness of its eigenvectors along edges and can be seen
as a frequency inherent to the graph structure. Larger eigenvalues correspond to higher
frequencies, as the corresponding eigenvectors “wiggle” more along edges. For arbitrary
vectors, we can decompose them as a linear combination of eigenvectors and say that
they contain different frequency components. For a multi-dimensional vertex signal X,
the diagonal of the product X⊤∆X contains the channel-wise quadratic forms. We
thus obtain a general smoothness measure via its trace, with a normalization factor
added for differentiation convenience.

Definition 20. The graph Dirichlet energy of X is given by

Edir(X) := 1
2
tr(X⊤∆X) = 1

2

∑
(i,j)∈E

∥(∇X)(i,j)∥2 = 1
2

∑
(i,j)∈E

w(i, j)∥xi − xj∥2.

Clearly, Edir is always non-negative. The relationship with the continuous Dirichlet
energy arises by viewing the summation as integration on the discrete Hilbert space
of edge signals.
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2.2 Graph Neural Networks

In this work, we employ graph neural networks (GNNs), which generalize conventional
neural nets for data on a grid to data with a generic graph topology. In particular,
GNNs exploit the relational inductive bias given by the graph structure. This devel-
opment of porting neural networks from the Euclidian plane to other geometries is
part of a broader effort called Geometric Deep Learning (Bronstein et al., 2017).

Recall that the vertex labeling V = {1, . . . , n} and thus the order of the rows in the
feature matrix and the rows/columns in the adjacency matrix is completely arbitrary.
Any permutation of the labels yields an isomorphic graph, which is a property that
needs to be incorporated into the GNN architecture. Each layer in a GNN is a function
GNNLayerθ : Rn×d × Rn×n → Rn×d′ parameterized by θ that takes an input signal
and the graph structure represented by the adjacency matrix to produce an output
signal. It should be operating in a way so that permutations of the vertices do not
alter the output except for permuted order.

Definition 21. We call GNNLayerθ permutation-equivariant if for all permutations
π ∈ Sn it holds that

GNNLayerθ(PπX, PπAPπ
⊤) = Pπ GNNLayerθ(X,A),

where the permutation matrix Pπ is defined using the Kronecker δ as

Pπ :=


...

· · · δπ(i),j · · ·
...

 ∈ On(R).

2.2.1 Graph Convolutional Networks

The choice
GNNLayerθ(X,A) = σ(XW)

for an element-wise activation function σ : R→ R and a weight matrix W ∈ Rd×d′

corresponds to a standard multi-layer perceptron (MLP) without bias term and
does not take the graph topology into account. The weight matrix acts on each
row independently and can thus be seen as performing channel mixing. The most
straightforward way to incorporate topology is by multiplying a variant of the adjacency
matrix from the left, so that it operates across rows. Commonly, its transpose is used†:

GNNLayerθ(X,A) = σ(A⊤XW)

Denoting by xi the i-th row of X as a column vector, we can read this row-wise as a
vertex feature update

xi ← σ(
∑
j:j→i

w(j, i)W⊤xj) (2.2)

†The literature is often sloppy with this detail and omits the transposition as it usually considers
undirected graphs where the adjacency matrix is symmetric anyway.
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where the channel-mixed features, called messages, of neighbors on incoming edges
are “pulled in” and combined in a weighted sum. This is very reminiscent of the
aggregation behavior of the well-known convolutional neural networks on grids. The
general framework of aggregating messages from a certain neighborhood is known in
the literature as message passing (Wu et al., 2022). While the graph structure is now
accounted for, there remain two technical issues with Equation (2.2):

• self-loops : As G has no self-loops, the aggregation over all vertices with incoming
edges to i does not include the feature of vertex i itself. It is, however, desirable
for the updated feature of vertex i to also depend on its own previous value.
We can achieve this by enforcing self-loops, i.e., using an augmented adjacency
matrix Â := A+ cI and degree matrix D̂in := Din + cI for c > 0.

• normalization: The number of summands depends on the in-degree and therefore
differs across vertices. When stacking multiple layers, this can lead to vastly
differing scales and thus cause numerical issues. We normalize by the in-degrees
of the vertices participating in an edge to fix the scale issue.

Definition 22. We call Ā := D̂
− 1

2
in ÂD̂

− 1
2

in the normalized augmented adjacency matrix.

With this modified adjacency definition, we obtain a directed version of the vanilla
GCN layer definition introduced by Kipf & Welling (2017) for undirected graphs.

Definition 23. A GCN layer with parameters θ = {W} and element-wise activation
function σ : R→ R is given by

GCNLayerθ(X,A) := σ(Ā⊤XW) = σ(D̂
− 1

2
in Â⊤D̂

− 1
2

in XW).

The weight W ∈ Rd×d′ is called the channel-mixing matrix. The fully expanded
row-wise vertex feature update equation reads

xi ← σ( c
di,in+c

W⊤xi +
∑
j:j→i

w(j,i)√
(di,in+c)(dj,in+c)

W⊤xj). (2.3)

Recall that we assumed G to be connected, guaranteeing positive degrees and thus
ensuring the normalization is well-defined. Finally, we must verify that this layer
respects the graph symmetries.

Lemma 24. GCNLayer is permutation-equivariant.

Proof. The key is Pπ being orthogonal. Let Aπ := PπAPπ
⊤ and Dπ := PπDinPπ

⊤

denote the permuted adjacency and in-degree matrix, respectively. We have

Âπ = Aπ + I = PπAPπ
⊤ +PπPπ

⊤ = Pπ(A+ I)Pπ
⊤ = PπÂPπ

⊤

D̂π = Dπ + I = PπDinPπ
⊤ +PπPπ

⊤ = Pπ(Din + I)Pπ
⊤ = PπD̂inPπ

⊤

due to orthogonality, and D̂
− 1

2
π = PπD̂

− 1
2

in Pπ
⊤ since

D̂π(PπD̂
− 1

2
in Pπ

⊤)2 = PπD̂in Pπ
⊤Pπ︸ ︷︷ ︸
I

D̂
− 1

2
in Pπ

⊤Pπ︸ ︷︷ ︸
I

D̂
− 1

2
in Pπ

⊤ = PπD̂inD̂
−1
in Pπ

⊤ = I,



2. Background 11

which leads to

Āπ = D̂
− 1

2
π ÂπD̂

− 1
2

π = PπD̂
− 1

2
in ����

Pπ
⊤PπÂ����

Pπ
⊤PπD̂

− 1
2

in Pπ
⊤ = PπĀPπ

⊤.

Putting everything together and using that the non-linearity is point-wise, we get

GCNLayerθ(PπX,PπAPπ
⊤) = σ(Ā⊤

πPπXW)

= σ(PπĀ
⊤
����
Pπ

⊤PπXW)

= Pπσ(Ā
⊤XW)

= Pπ GCNLayerθ(X,A).

Remark 25. When assuming G to be undirected, there is an alternative and more
principled way to arrive at the GCN layer equation, which Defferrard et al. (2016)
and Kipf & Welling (2017) used to derive it originally. It draws from the frequency
interpretation of the eigenvalues of ∆ to define graph analogs of the Fourier transform
and the convolution operation known from continuous signal processing. A particular
choice of filter to be convolved with the vertex signal then yields Definition 23. However,
this derivation explicitly relies on the adjacency matrix to be symmetric. It does not
work in the more general directed case, which is the one we consider in this work.
Therefore, we had to derive it ad-hoc without the graph signal processing motivation.

A subtle issue remains: by setting w̃(i, i) := c and w̃(i, j) := w(i, j) for i ̸= j, as well

as d̃i,in := di,in + c, we can rewrite the vectorized layer equation (2.3) to

xi ← σ(W⊤
∑

j:j→i or j=i

w̃(j,i)√
d̃i,ind̃j,in

xj).

Hence, the layer’s output for a vertex is essentially a weighted neighborhood feature
average which gets transformed by W and σ. This means that applying many of
these updates in succession leads to the features of adjacent vertices converging, a
phenomenon known as oversmoothing (Oono & Suzuki, 2020). The graph Dirichlet
energy allows to make this statement precise.

Lemma 26. For a stack of GCN layers given by H(k) := GCNLayerθk(H
(k−1),A), we

have Edir(H
(k))

k→∞−−−→ 0.

Proof. See Cai & Wang (2020).

A common remedy is introducing a residual connection into each layer by adding the
input to the output (Chen et al., 2020). In this vein, the neural network successively
performs additive changes to the input instead of transforming it completely at every
layer. Note that this now requires the input and output dimensionality to match up.

Definition 27. A residual GCN layer with parameters θ = {W} where W ∈ Rd×d is
square and element-wise activation function σ : R→ R is given by

ResGCNLayerθ(X,A) := X+GCNLayerθ(X,A).
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2.2.2 The Gradient Flow Framework

For understanding the behavior of GNNs, Di Giovanni et al. (2022) propose a principled
framework based on the concept of gradient flows. It relies on the key fact that residual
GNNs† can be viewed as simulating the evolution of an ordinary differential equation
(Chen et al., 2018; Xhonneux et al., 2020). To see this, let GNNLayerθ : Rn×d → Rn×d

be a GNN layer with parameters θ and consider an autonomous first-order ODE of
the form

Ẋ(t) = GNNLayerθ(X(t)) (2.4)

evolving the initial state X(0) = X for t ≥ 0. To discretize this, we choose a step size
τ > 0 and construct the Taylor expansion around X(t):

X(t+ τ) = X(t) + τ GNNLayerθ(X(t)) +O(τ 2).

By dropping all higher-order terms, we obtain the forward Euler method for approxi-
mately solving Equation (2.4). It starts at X(0) := X and iteratively updates

X(k+1) := X(k) + τ GNNLayerθ(X
(k)), (2.5)

for k = 0, . . . , N − 1. This is reminiscent of an N -layer residual neural network with
the parameters θ shared across layers. If the step size τ is sufficiently small, we have
X(k) ≈ X(kτ). The ODE dynamics can be recovered for τ → 0 as the continuous-time
limit of the GNN.

Definition 28. The ODE (2.4) is called a gradient flow if there exists an energy
functional Eθ : Rn×d → R such that the right-hand side is its negative gradient:

GNNLayerθ(X(t)) = −∇Eθ(X(t)). (2.6)

Lemma 29. The energy Eθ defining a gradient flow decreases monotonically along a
solution X of the gradient flow.

Proof. d
dt
Eθ(X(t)) = ⟨−∇Eθ(X(t)), Ẋ(t)⟩ = −∥∇Eθ(X(t))∥2 ≤ 0.

The corresponding forward Euler step simulation algorithm obtained by plugging (2.6)
into (2.5) is gradient descent:

X(k+1) = X(k) − τ∇Eθ(X
(k)). (2.7)

Due to the energy minimization perspective, gradient flow ODEs are ubiquitous in
physics and provide high interpretability. Specifically, we can consider the vertex
features as particles in Rd with energy Eθ. The only remaining design choice is the
definition of Eθ. In an attempt to generalize the continuous Dirichlet energy stemming
from the heat diffusion equation, Di Giovanni et al. propose the following quadratic
energy parameterized by two symmetric matrices:

†In fact, any residual neural network
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Definition 30. The GRAFF energy of X parameterized by θ = {W,Ω} ⊆ Rd×d

where W,Ω are symmetric is given by

Eθ(X) := 1
2

∑
i∈V

∥xi∥2Ω︸ ︷︷ ︸
external energy

−1
2

∑
(i,j)∈E

Āij⟨xi,xj⟩W︸ ︷︷ ︸
internal energy

.
(2.8)

The first term is independent of Ā and describes an external energy component, while
the second term accounts for pair-wise interactions. The symmetry requirement is a
technical necessity arising when we differentiate to obtain the gradient flow equation.

Lemma 31. Ẋ(t) = −∇Eθ(X(t)) = ĀX(t)W −X(t)Ω. (2.9)

Proof. Differentiation, see Di Giovanni et al. (2022, Appendix B).

The resulting neural network definition by plugging Equation (2.9) into (2.5) reads

X(k+1) = X(k) + τ(ĀX(k)W −X(k)Ω). (2.10)

For τ = 1 and Ω = 0, we obtain a residual GCN with shared symmetric weights
that lacks non-linear activations. However, Di Giovanni et al. prove that Eθ also
decreases along solutions of an “upgraded” version of Equation (2.9) which includes a
non-linearity.

Lemma 32. The GRAFF energy Eθ also monotonically decreases along solutions X
of Ẋ(t) = σ(−∇Eθ(X(t))) where σ : R→ R satisfies xσ(x) ≥ 0.

Proof. See Di Giovanni et al. (2022, Appendix D).

Combining Equation (2.10) and Lemma 32, we arrive at a new type of GNN layer.

Definition 33. A GRAFF layer with parameters θ = {W,Ω} and activation function
σ : R→ R is given by

GRAFFLayerθ(X,A) := X+ τσ(ĀXW −XΩ). (2.11)

The symmetric square weights W,Ω ∈ Rd×d are called the internal and external
channel-mixing matrix, respectively.

Importantly, weight symmetry does not diminish the expressive power of the GNN
(Hu et al., 2019). Let us briefly verify that this new layer is well-behaved.

Lemma 34. GRAFFLayer is permutation-equivariant.

Proof. Re-using Āπ from the proof of Lemma 24, we have:

GRAFFLayerθ(PπX,PπAPπ
⊤) = PπX+ τσ(ĀπPπXW −PπXΩ)

= PπX+ τσ(PπĀ�
��Pπ
⊤PπXW −PπXΩ)

= PπX+ τσ(Pπ(ĀPπXW −XΩ))

= Pπ GRAFFLayerθ(X,A).
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Stacking multiple GRAFF layers yields a GNN that reduces the GRAFF energy
functional with increasing depth, either directly by simulating its gradient flow or
indirectly thanks to Lemma 32. We can use this connection to gain more insight into
the dynamics of such a GNN.

In particular, we consider the eigenvalue decomposition of the (symmetric) internal
channel mixing matrix W = UΛU⊤. Split Λ = Λ+ − Λ− into the positive part
Λ+ := max{0,Λ} and the negative part Λ+ := max{0,−Λ} of the spectrum to obtain

W = UΛ+U
⊤︸ ︷︷ ︸

=:W+

−UΛ−U
⊤︸ ︷︷ ︸

=:W−

= Θ⊤
+Θ+ −Θ⊤

−Θ−.

By design, W+ and W− are symmetric positive definite. Hence, their Cholesky
decompositions W+ = Θ⊤

+Θ+ and W− = Θ⊤
−Θ− are well-defined.

Lemma 35. The GRAFF energy decomposes as follows:

Eθ(X) = 1
2

∑
i∈V

∥xi∥2Ω−W + 1
4

∑
(i,j)∈E

∥Θ+(∇X)(i,j)∥2︸ ︷︷ ︸
attraction

− 1
4

∑
(i,j)∈E

∥Θ−(∇X)(i,j)∥2︸ ︷︷ ︸
repulsion

(2.12)

Proof. See Di Giovanni et al. (2022).

Recall that by Lemma 32, the energy Eθ decreases with deeper layers of the GNN.
Hence, in (2.12) the terms ∥Θ+(∇X)(i,j)∥2 decrease over time, so that adjacent vertex
representations become aligned in the non-null singular subspaces ofΘ+. This behavior
can be interpreted as attractive forces that lead to a smoothing effect. Analogously, in
the orthogonal complement, adjacent representations are pushed apart by repulsive
forces leading to a sharpening effect due to the growth of ∥Θ−(∇X)(i,j)∥2.



Chapter

Methodology 3
In this chapter, we explain our approach in depth. Section 3.1 outlines our data
preprocessing steps, and Section 3.2 fully specifies the central machine learning task
we consider.

3.1 Data Preprocessing

Our study is based on the LamaH-CE† dataset (Klingler et al., 2021). It contains
historical discharge measurements on an hourly resolution for 859 gauging locations
in the broader Danube river network shown in Figure 3.1. Covering an area of
170 000 km2 with diverse environmental conditions, Klingler et al. expect that results
from large-scale investigations on this dataset carry over to other river networks.

Figure 3.1: Geographical overview of LamaH-CE. Circle color indicates gauge elevation
and circle size indicates catchment size. (Klingler et al., 2021)

†LArge-SaMple DAta for Hydrology for Central Europe
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Next to the discharge measurements, LamaH-CE also offers meteorological time
series data with indicators like temperature, precipitation, and wind force. Due to
computational limitations, we cannot take into account the meteorological data in
this study. However, this is not an issue since we are only interested in a conceptual
relative comparison, rather than absolute performance. Nevertheless, future work
should aim to incorporate the meteorological data as well, for it is likely to improve
the forecasting capabilities of a statistical predictor.

The river network defined by LamaH-CE naturally forms a directed acyclic graph
(DAG) G = (V , E). The vertices V represent gauges, and the edges E represent flow
between a gauge and the next downstream gauges. Hence, G is anti-transitive, i.e., no
skip connections exist:

∀u, v, w ∈ V : (u, v) ∈ E ∧ (v, w) ∈ E =⇒ (u,w) /∈ E .

Region Selection. Figure 3.1 shows that G contains four different connected compo-
nents, of which we choose “Danube A” for our study as it is by far the largest one.
Its most downstream gauge close to the Austrian-Hungarian border has complete
discharge data for the years 2000 through 2017. Starting at this gauge, we determine
all connected gauges of the Danube A region by performing an inverse depth-first
search given by Algorithm 1. Overall, 608 out of the original 859 gauges belong to
this connected component.

Algorithm 1: Inverse depth-first search

Input: DAG G = (V , E), start vertex v0 ∈ V
Output: All direct and indirect predecessors of v0 in G

inverseDFS(G, v0)
1 Vin ← {v ∈ V | (v, v0) ∈ E}
2 if Vin = ∅ then
3 return {v0}
4 else

5 return {v0} ∪
⋃

v∈Vin

invDFS(v)

Gauge Filtering. A critical issue with the historical measurements is gaps in the
data. Klingler et al. have filled any consecutive gaps of at most six hours by linear
interpolation and marked the remaining longer gaps with the value -999. We only
want to consider gauges that (a) do not have these longer periods of missing values
and (b) provide discharge for at least the same timeframe (2000 to 2017) as the most
downstream gauge. To this end, we remove all gauges that violate these requirements
from the graph using Algorithm 2. Predecessors and successors of a deleted vertex get
newly connected, so that network connectivity is maintained. Note that thanks to
antitransitivity, a duplicate check is unnecessary when inserting the new edges. After
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this pre-processing step, we are left with 375 out of the previously 608 gauges, which
is quite a drastic reduction.

Algorithm 2: Rewire-removal of a vertex

Input: antitransitive DAG G = (V , E), moribund vertex vrip ∈ V
Output: G without vrip where its predecessors and successors are rewired

rewireRemove(G, vrip)
1 Vin ← {v ∈ V | (v, vrip) ∈ E}
2 Vout ← {v ∈ V | (vrip, v) ∈ E}
3 V ← V \ {vrip}
4 E ← E \ (Vin × {vrip}) \ ({vrip} × Vout) ∪ (Vin × Vout)

Overall, the reduced graph G now consists of n := |V| = 375 gauges with T hours
of discharge measurements for the years 2000 to 2017, which we can conceptually
represent as a vertex signal Q =

[
q(1) | q(2) | . . . | q(T )

]
∈ Rn×T .

Normalization. As is common practice in deep learning, we normalize the data to
surrender all gauges to the same scale and accelerate the training process (LeCun
et al., 2002). In particular, we normalize the discharge time series per gauge using the
standard score, i.e., we calculate the per-gauge empirical means and variances

µ =
1

T

T∑
t=1

q(t), σ2 =
1

T − 1

T∑
i=1

(q(t) − µ)2,

and replace each time step as q(t) ← q(t)−µ
σ

. All operations are applied element-wise.

Train-test split. To assess the performance of a trained model on unseen data, we
reserve the last two years, i.e., one ninth (∼11 %) of all observations, as a test set.
Training thus only uses data from the years 2000 to 2015.

3.2 The Forecasting Task

With the data being sorted, we now define the machine learning task for the GNN,
which is an instance of supervised vertex autoregression. Assume we are given a
certain amount of W ∈ N most recent hours of discharge measurements for all gauges.
Our goal is to predict the discharge L ∈ N hours in the future. We call W the window
size and L the lead time of the predictor.

3.2.1 Key Objects

Features/Targets. To conduct supervised learning, we extract input-output pairs
from the time series represented by Q. For t = W, . . . , T − L, we define the feature
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matrix at time step t and the corresponding target vector as

X(t) :=

[
q(t−W+1)

∣∣∣∣∣ . . .

∣∣∣∣∣ q(t−1)

∣∣∣∣∣ q(t)

]
∈ Rn×W , y(t) := q(t+L) ∈ Rn.

We collect all samples into the set D = {(X(t),y(t))}T−L
t=W and partition it according to

the train-test split into D = Dtrain ∪· Dtest. The extraction process can be illustrated
as follows:

time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

g
a
u
g
es

←
−−
−−
−−
−−
−−
−

 Q X(t) L←→ y(t) . . .


︸ ︷︷ ︸

W

Adjacency. Besides the discharge history, we feed the GNN the river network topology.
For the definition of adjacency matrix entries corresponding to edges (i, j) ∈ E (the
rest being zero), we consider the following options:

• isolated: Ai,j := 0 equates to removing all edges and results in the augmented nor-
malized adjacency matrix to be a multiple of the identity so that the GCNLayer
degenerates to a vertex-wise linear layer.

• binary: Ai,j := 1 corresponds to the unaltered adjacency matrix as it comes
with the LamaH-CE dataset.

• weighted: Ai,j := w(i,j) quantifies a physical relationship, for which LamaH-CE
provides three alternatives:

– the stream length along the river between i and j,

– the elevation difference along the river between i and j, and

– the average slope of the river between i and j.

• learned: Ai,j := ω(i,j) where ω ∈ R|E| is a learnable model parameter.

The first two options allow us to compare the effect of introducing the river network
topology into the model at all. The last two options enable insights into what kind
of relative importance of edges is beneficial for the predictor. To fully specify the
augmented normalized adjacency matrix Ā, we generally set the weights for the
artificial self-loops as the mean of all incoming edge weights to assign equal importance
to self-loops. The only exception to this is option one, where the mean would be zero
and thus result in no information flow whatsoever, so that we set the self-loop weights
to one instead.
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Model. Our desideratum is a GNN fθ : Rn×W → Rn parameterized by θ which
closely approximates the mapping of windows X to targets y, i.e., ŷ := fθ(X) ≈ y.
All our models have a sandwich architecture: a linear layer EncoderθE : Rn×W → Rn×d

embeds the W -dimensional input per gauge into a d-dimensional latent space. On this
space, a sequence of N GNN layers GNNLayerθi : R

n×d × Rn×n → Rn×d are applied.
Finally, another linear layer DecoderθD : Rn×d → Rn projects from the latent space to
scalars per gauge. In symbols, this reads:

H(0) := EncoderθE(X)

H(i) := GNNLayerθi(H
(i−1),A) for i = 1, . . . , N

ŷ := DecoderθD(H
(N)).

The rationale behind the sandwich construction is to allow all hidden GNN layers to
operate on the same latent space Rd, which is a requirement for residual layers like
ResGCNLayer (Definition 27) and GRAFFLayer (Definition 33). We may illustrate
it as follows:

X ∈ Rn×W H(i) ∈ Rn×d ŷ ∈ RnEncoder Decoder

N ×GNNLayer

3.2.2 Training

Optimization Objective. To measure the error between a model prediction ŷ and
the ground truth y, we use the multi-dimensional square loss

L(ŷ,y) := 1
n
∥ŷ − y∥2.

Training is then defined as optimizing the expected loss over the empirical distribution
of training samples in Dtrain. The optimal model parameters are given by

argmin
θ

E(X,y)∼Dtrain
[L(fθ(X, Ā),y)].

Graph Batching. For computational efficiency, we do not feed the model a single
sample at a time during training but a batch of B different samples (X(ti),y(ti)) ∈ Dtrain.
To this end, we stack the samples on top of each other and duplicate the normalized
adjacency matrix along the diagonal of a B times larger matrix:

Xbatch :=


X(t1)

X(t2)

...
X(tB)

 , ybatch :=


y(t1)

y(t2)

...
y(tB)

 , Ābatch :=


Ā

Ā
. . .

Ā

 .
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Note that graph convolutional layers such as GCNLayer and GRAFFLayer only
operate on neighbors and thus vertices within the same connected component. Since
Ābatch defines B different connected components isolated from each other, the result
will be the same as if the computation had been performed individually. However,
batching allows us to exploit parallelism on modern scientific computing hardware
like TPUs and IPUs.

3.2.3 Inference

Metrics. Recall that we perform training on the normalized samples. This means
that the square loss objective during training treats all gauges equally as they have the
same scale, which is a desirable property for training. However, when evaluating the
performance of the model, we need to calculate metrics on the unnormalized version
of the predictions and targets:

ŷorig := σ ⊙ ŷ + µ,

yorig := σ ⊙ y + µ.

The most intuitive regression metric is the Mean Squared Error (MSE). In our multi-
dimensional regression problem, it is defined as the error vector

MSE := 1
|Dtest|

|Dtest|∑
i=1

(ŷ
(ti)
orig − y

(ti)
orig)

2 = σ2 ⊙ 1
|Dtest|

|Dtest|∑
i=1

(ŷ(ti) − y(ti))2

where all operations are applied element-wise. We clearly see how the factor σ2

re-introduces the scale which normalization removed.

Next to the MSE, the most widely used metric in hydrology is the Nash-Sutcliffe
Efficiency (NSE; Nash & Sutcliffe, 1970). It compares the sum of squared errors of
the model to the sum of squared errors of the constant mean-predictor and subtracts
this value from one to obtain a percentage score in [0, 1].

NSE := 1−
∑|Dtest|

i=1 (ŷ
(ti)
orig − y

(ti)
orig)

2∑|Dtest|
i=1 (µ− y

(ti)
orig)

2
= 1− NSE

σ2

An NSE of zero means that the model’s predictive capability is no better than that of
the empirical mean, while an NSE of one means that all model predictions are perfect.
We straightforwardly obtain summary metrics by averaging across gauges:

MSE :=
1

n

n∑
g=1

MSEg, NSE :=
1

n

n∑
g=1

NSEg .

We leave the consideration of further evaluation metrics like the ones proposed by
Yilmaz et al. (2008) to future work.
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Recurrent Forecasting. Recall that the model output is a single discharge prediction
for lead time L. However, in practice, it is desirable to produce a contiguous series of
hourly future discharge predictions. One solution is to simply train multiple models
for lead times L = 1, 2, . . . which is computationally demanding. Alternatively, the
predictions of a single model trained with L = 1 can be fed back in a recurrent fashion
to simulate higher lead times. Algorithm 3 specifies this shift-and-repeat approach.

Algorithm 3: Rolling Window Forecasting

Input: Trained model fθ : Rn×W × Rn×n → Rn×W

Discharge observations X ∈ Rn×W

Adjacency matrix A ∈ Rn×n

Number of recurrent forecasting steps K ∈ N
Output: Recurrent forecast L steps into the future

rollingForecast(fθ,X, L)

1 Ŷ ←
[ ]

2 for K iterations do
3 ŷ ← fθ (X,A)

4 X←

 | | | |
X:,2 X:,3 · · · X:,W ŷ
| | | |


5 Ŷ ←

[
Ŷ ŷ

]
6 return Ŷ
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Results 4
In this chapter, we present and discuss our empirical results. Section 4.1 details the
experimental setup, Section 4.2 explores the impact of river topology, Section 4.3
explores the impact of model depth, Section 4.4 investigates the worst-case performance,
and Section 4.5 adds the Gradient Flow Framework to the picture.

4.1 Experimental Setup

Hyperparameter Value

d
a
t
a window size (W ) 24 h

lead time (L) 1 h
normalization? yes

m
o
d
e
l

architecture ResGCN
network depth (N) 20
latent space dim (d) 64
shared parameters? no
edge direction downstream
adjacency type binary

t
r
a
in
in
g initialization glorot
optimizer adam
# epochs 20
batch size (B) 16
learning rate (α) 10−4

Table 4.1: Default hyperparameter choices
for our experiments.

We conduct all experiments on Graph-
core IPUs using Paperspace. Our Python
implementation is based on the libraries
PyTorch (Paszke et al., 2019), PyTorch
Geometric (Fey & Lenssen, 2019), and
PopTorch (Graphcore, 2020). The code
to reproduce our experiments is publicly
available as an anonymized Git reposi-
tory†. Table 4.1 lists the relevant hy-
perparameters we use throughout all ex-
periments unless stated otherwise, cat-
egorized into data, model, and training
parameters.

On the data side, we choose a window
size of W = 24 as a compromise between
sufficiently many past observations and
computational efficiency. We further jus-
tify this choice at the end of this section. We set the lead time to L = 1 since we can
achieve higher lead times by recurrent forecasting (Algorithm 3).

On the model side, we employ a residual GCN with ReLU non-linearities. We choose
a depth of N = 20 layers to allow it to propagate information along the entire river
graph as we determined the longest path in the graph to consist of 19 edges. The latent
space dimensionality of d = 64 is rather arbitrary and mostly a memory concern. We
usually give each layer in the neural network its own set of parameters, but consider
the case of shared parameters in Section 4.5. The information flow direction and
adjacency type hyperparameters will be explored in detail in Section 4.2.

†https://anonymous.4open.science/r/FloodGNN

https://anonymous.4open.science/r/FloodGNN
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On the optimization side, all neural network parameters are randomly initialized
using the theoretically well-founded Glorot initialization scheme (Glorot & Bengio,
2010). We then perform 20 epochs (passes through the dataset) of stochastic mini-
batch gradient descent, which is enough for the process to converge. The descent
algorithm used is the sophisticated Adaptive Moments (Adam) optimizer (Kingma
& Ba, 2015) with a base learning rate of 10−4, which results in stable training. To
prevent overfitting, we randomly hold out 25% of the training set, which corresponds
to three years of observations, and select the parameters from the epoch in which the
loss calculated over this holdout set was the lowest.

To provide further justification for the choice of window size W , consider the autocorre-
lation of discharge, i.e., the Pearson correlation of the entire discharge time series with
a time-lagged version of itself. Intuitively, only time lags for which this autocorrelation
is high are informative for predicting a time step. We calculate this autocorrelation
across time steps for each gauge individually and visualize the resulting distributions
over gauges in Figure 4.1 with boxplots. We see that discharge, on average, correlates
very well (ρ ≥ 0.8) with the past 15 hours. However, one particular outlier, corre-
sponding to the lowest sequence of black circles, has plummeting autocorrelation for
time lags of more than two hours. We will pay special attention to this gauge (ID 85
in the dataset) in Section 4.4 as it can be expected to be particularly hard to forecast.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
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Figure 4.1: Boxplot of discharge autocorrelation for different lag values across gauges.
Black circles denote outlier gauges which are consequently harder to forecast.
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4.2 River Topology Impact

Our main experiment compares the impact of the different gauge adjacency definitions
detailed in Section 3.2. The case of isolated gauges, where the GNN acts like a
conventional MLP, serves as a baseline. In addition, we also consider alternative edge
orientations, which determine the direction of information flow in the GNN, as it is
not a priori clear which one benefits the model most. The downstream orientation is
given by the dataset, the upstream orientation results from reversing all edges, and
the bidirectional orientation from adding all reverse edges to the forward ones.

4.2.1 Performance Comparison

For all 18 topology combinations, we calculate the average MSE and NSE metrics
defined in Section 3.2.3 on the test set and report the results in Table 4.2. Note
that they come with a caveat: we only trained one model for each combination due
to computational limitations. Future endeavors should account for stochasticity in
the network initialization and holdout set selection by training multiple models per
combination with different random seeds. Nevertheless, many of the insights that our
results provide are so unambiguous that they likely hold across initial conditions.

downstream upstream bidirectional

adjacency type MSE ↓ NSE ↑ MSE ↓ NSE ↑ MSE ↓ NSE ↑

isolated 17.0 98.66% 17.0 98.66% 17.0 98.66%

binary 15.3 98.60% 14.3 98.13% 23.4 98.72%

stream length 13.6 98.62% 14.4 98.38% 21.5 98.74%
elevation difference 17.6 98.60% 18.4 98.40% 35.2 98.63%
average slope 13.7 98.62% 14.1 98.36% 23.8 98.73%

learned 11.0 98.66% 13.7 98.65% 25.3 98.71%

Table 4.2: ResGCN performance on different river network topologies. Note how the
isolated adjacency type leads to the exact same result across edge orientations as there
are no edges, and we initialize with the same random seed.

Surprisingly, model performance shows almost no sensitivity to the choice of graph
topology. Most importantly, isolating the gauges does not harm the performance at
all. This indicates that the forecasting task for a gauge mainly benefits from the
past discharge at that gauge but not from the discharge at neighboring gauges. The
river graph topology appears to make no difference. Even when the model is allowed
to learn an optimal edge weight assignment, it does not manage to outperform the
baseline.

In absolute terms, the performance is very good throughout all combinations, as
indicated by the high average NSE scores. Given that MSE is a squared measure, the
models make average errors on the order of magnitude of 10m3/s. Potentially, the
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forecasting task on the LamaH-CE dataset is “too easy”, making a simple MLP hit
the performance ceiling already. Future work is encouraged to check whether this
behavior persists when the model receives meteorological inputs as well.

4.2.2 Learned Weights

The case of learned edge weights is of particular interest. They were initialized by
drawing from the uniform distribution in [0.9, 1.1] to arrange them neutrally around one
while still introducing sufficient noise to break symmetry. Whenever learned weights
get negative during training, we clip them by replacing them with zero. Figure 4.2
reveals the development of their mean and spread over time during training. For a
scale-independent measure of spread, we divide the standard deviation by the mean.
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Figure 4.2: Mean and spread of learned weights during training.

Owing to their initialization, the weights start with a mean of one and a small standard
deviation across edges. While with a downstream orientation, the weights begin to grow
on average, they shrink with an upstream orientation and stay approximately constant
in the bidirectional case. However, in all cases, the mean appears to converge to a value
on the same order of magnitude. Furthermore, the spread of the weights increases
significantly in all three cases. This suggests that a constant weight assignment on
edges, like the binary one, is not an optimum for the GNN.

To see if the learned weights exhibit any similarities with the physical weights, we
calculate Pearson correlation coefficients for all combinations. Table 4.3 shows that
none of the physical weightings correlate well with the learned weights. Hence, the
physical weights are not in the optimal regime either.
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learned weights

physical weights downstream upstream bidirectional

stream length 0.048 0.140 0.034
elevation difference 0.153 -0.211 -0.142
average slope 0.093 -0.246 -0.146

Table 4.3: Pearson correlation between learned weights and physical weights.

4.2.3 Dirichlet Energy

To gain insight into the dynamics of vertex representations in the GNN’s latent space,
we track the graph Dirichlet energy (Definition 20) of the hidden layer activations
during the forward pass. Figure 4.3 shows that for all topology combinations except
those with isolated gauges, the Dirichlet energy increases monotonically with positive
curvature. This confirms that thanks to the residual connection, over-smoothing is
avoided. Instead, a strong sharpening process occurs where features of neighboring
gauges become more dissimilar in latent space throughout the layers. Given that the
graph Dirichlet energy is the sum of unnormalized Rayleigh quotients of the graph
Laplacian, we infer that high-frequency dynamics dominate.

0 5 10 15 20

4

2

0

2

4

di
ric

hl
et

 e
ne

rg
y

1e 2 isolated
downstream
upstream
bidirectional

0 5 10 15 20

1

2

3

4

1e3 binary
downstream
upstream
bidirectional

0 5 10 15 20
0

1

2

3

4

5 1e3 learned
downstream
upstream
bidirectional

0 5 10 15 20
layer

0

2

4

6

8

di
ric

hl
et

 e
ne

rg
y

1e5 stream length
downstream
upstream
bidirectional

0 5 10 15 20
layer

0.2

0.4

0.6

0.8

1.0

1.2
1e6 elevation difference

downstream
upstream
bidirectional

0 5 10 15 20
layer

0.00

0.25

0.50

0.75

1.00

1.25

1.50
1e5 average slope

downstream
upstream
bidirectional

Figure 4.3: Graph Dirichlet energy evolution for different adjacency types, averaged
over the test set. In the isolated case, it is trivially zero, as no edges exist.
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4.3 Network Depth Impact

The rationale for setting the number of layers to N = 20 was to allow information
to propagate across the entire river network. However, since removing all edges from
the graph does not deteriorate the performance (cp. Table 4.2), we can also consider
shallower neural networks. In particular, we want to exclude that the considerable
depth is causing the GCN to not outperform the baseline MLP due to more general
issues with training very deep networks. In this case, a GCN with fewer layers
could profit more from the graph structure, despite not achieving global information
propagation. Hence, we train a residual GCN with the default hyperparameters from
Table 4.1 where we only vary the number of layers in steps of two from 2 to 20. The
resulting MSE and NSE scores across gauges are shown in Figure 4.4.
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Figure 4.4: ResGCN performance with varying depth, averaged over gauges. Shaded
areas indicate 95% confidence intervals.

The experiment provides two insights. First, the inability of the binary model to
outperform the isolated one is consistent across network depths so that we can rule
out training issues. Second, the performance is independent of model depth, which
means that the larger receptive field achieved by more layers does not help. Both
corroborate the previous observations that ResGCN fails to take advantage of the
graph structure.

4.4 Worst Gauge Investigation

Recall from Section 4.1 that gauge #85 in the dataset exhibits particularly low
autocorrelation of discharge with time lags of more than two hours. Consequently,
the performance on this gauge of all trained models is considerably below the mean.
For instance, the binary-downstream model achieves its worst NSE of only 70.34% on
this outlier gauge. To better understand the model’s predictive behavior, we produce
recurrent forecasts according to Algorithm 3 for 24 hours into the future and compare
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them with the ground truth observations. Figure 4.5 shows this comparison for a
random subset of 18 samples from the test set.

First, we observe that the outlier gauge is characterized by an abundance of sudden
spikes, which are inherently hard to forecast for any predictor. The gauge is likely
located behind a floodgate. As a result, the forecasting performance is mediocre,
with the recurrent forecast often missing spikes and drops. In addition, the rolling
window forecasts more generally suffer from exponential accumulation as predictions
are increasingly used as input. In fact, the very last prediction for the 24-hour lead
time merely depends on a single true observation. However, the alternative approach
of training 24 models for each choice of lead time is computationally prohibitive and
thus left for future work.

4.5 Using GRAFF

To see if the theoretical benefits of the Gradient Flow Framework (cp. Section 2.2.2)
carry over to practice, we repeat the topology comparison from Section 4.2 with a
GRAFFNN model architecture. We set the step size to τ = 1 and share the channel
mixing matrices across layers to match the ODE discretization interpretation. The
results in Table 4.4 are essentially equivalent to those of the ResGCN and exhibit the
same tendencies. This is true as well for the evolution of dirichlet energy and the
recurrent forecasting performance, which is why we do not include the very similar
figures here. The fact that GRAFFNN achieves equal performance is remarkable, as
it has 20 times fewer parameters due to sharing. This indicates that the dynamical
systems viewpoint is adequate for the forecasting task.

downstream upstream bidirectional

adjacency type MSE ↓ NSE ↑ MSE ↓ NSE ↑ MSE ↓ NSE ↑

isolated 17.9 98.58% 17.9 98.58% 17.9 98.58%

binary 38.6 98.65% 22.9 98.57% 31.8 98.64%

stream length 33.9 98.65% 17.1 98.64% 29.7 98.66%
elevation difference 42.6 98.56% 18.3 98.59% 35.3 98.66%
average slope 45.0 98.64% 15.8 98.64% 27.9 98.68%

learned 14.3 98.70% 15.3 98.64% 25.1 98.68%

Table 4.4: GRAFFNN performance on different river network topologies. Note how
the isolated adjacency type leads to the exact same result across edge orientations as
there are no edges, and we initialize with the same random seed.
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Figure 4.5: Rolling window forecasts for outlier gauge #85 with a 24-hour lead time.
Negative time indicates past and positive time indicates future discharge.
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Figure 4.6: Boxplots of the eigenvalues of the internal channel mixing matrix of all
trained GRAFNNs.

Since GRAFF provides us with an attraction-repulsion paradigm, we take a closer
look at the eigenvalues of the internal channel mixing matrix. Figure 4.6 visualizes
their distribution for each topology combination. There is a bias toward negative
eigenvalues, and we find that in most combinations, the spectrum consists of 30
positive and 34 negative eigenvalues. Hence, both attractive and repulsive forces act
on vertex representations in the latent space of the GRAFNN, with the repulsive ones
slightly dominating.
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Conclusion 5
In this work, we explored the applicability of GNNs to holistic flood forecasting in a
river network graph. Based on the LamaH-CE dataset, we framed a supervised vertex
autoregression machine learning task for predicting future discharge at all gauging
stations in the graph given past observations. By modifying the adjacency matrix, we
compared the impact of different adjacency definitions on the prediction performance.

Our results reveal that the impact of river topology is negligible. The GNN performs
equally well even when all edges are removed from the graph, which makes it act like
an MLP. It does not benefit from weighted edges that resemble physical relationships
between gauges. When the model is allowed to jointly learn the weights along with the
other parameters, they correlate with neither constant weights nor any of the physical
weightings given by the dataset. A depth study shows that the results are not caused
by issues with training deep models but prove consistent throughout any number of
layers. Investigations on a challenging outlier gauge show that the GNN struggles
to predict sudden discharge spikes. By employing GRAFF, we find that parameter
sharing across layers does not deteriorate performance and that a mixture of attractive
and repulsive forces act on vertex representations in the latent space of the GNN,
while the graph Dirichlet energy evolution indicates high-frequency dynamics.

There is a myriad of avenues left to investigate in future work. On the modeling
front, recent approaches catering to the DAG structure of a river network such as
DGCN (Tong et al., 2020), MagNet (Zhang et al., 2021), and DAGNN (Thost & Chen,
2021) are worth investigating. Alternatively, given that a river network graph is very
sparse, it might help to replace the edge set with its transitive closure in a vanilla
GCN. Furthermore, one might consider shifting the task definition to a graph-level
discharge prediction at the most downstream gauge. In any case, multiple training
repetitions with different seeds should be conducted to account for stochasticity if the
computational resources are available.

On the data front, future work is advised to exploit the meteorological time series
contained in LamaH-CE as an additional input to the model. Beyond LamaH-CE,
there is a broader issue to be addressed: we used a river network dataset from central
Europe as discharge measurements are readily available there for long time periods.
However, the regions most affected by floods are typically in low-income countries
where data is scarce. Future work should make an effort to install gauges and collect
large-scale datasets in these regions to enable more relevant studies and alleviate the
Western bias prevalent in research.
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