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Abstract
Most established Graph Neural Network architec-
tures rely on the input graphs to be homophilic.
On heterophilic graphs, they often perform worse
than structure-agnostic models. The recently pro-
posed Gradient Flow Framework (GraFF) gen-
eralizes many architectures as discretizations of
gradient flow differential equations. Governed by
the spectrum of one of its channel-mixing matri-
ces, GraFF allows for both attractive and repulsive
interactions between node representations in the
latent space of a GNN. In this work, we exam-
ine the natural relationship between this attrac-
tion/repulsion behavior and the homophily ratio
of the input graph. Our findings suggest that this
relationship is much weaker than expected.

1. Introduction
Due to their inductive relational bias, Graph Neural Net-
works (GNNs) are successful in a variety of node classi-
fication tasks (Zitnik et al., 2018; Ying et al., 2018; Dou
et al., 2020). However, the underlying graph in these appli-
cations is usually homophilic, i.e., adjacent nodes are very
likely to share a class label. Dealing with the heterophilic
case where predominantly nodes of unequal classes connect
remains challenging. Often in these settings, a simple multi-
layer perceptron that ignores the graph topology altogether
outperforms GNNs.

According to some researchers, the crux of the matter con-
sists in GNNs implicitly assuming homophily as they typi-
cally consider a notion of neighborhood that includes only
the node itself and its direct neighbors. Consequently, there
is a line of research suggesting extensions, modifications,
and tweaks to GNN architectures: Zhu et al. (2020) pro-
pose three design techniques (ego- and neighbor-embedding
separation, higher-order neighborhoods, combination of in-
termediate representations) to explicitly address heterophily,
leading to the H2GCN architecture. Zhu et al. (2021) pro-
pose to incorporate a class compatibility matrix that explic-
itly describes the pair-wise connectivity between classes,
leading to the CPNN framework. Finally, Chien et al. (2021)
propose to adaptively learn Generalized PageRank weights,
leading to the GPR-GNN architecture.

Contrary to the specialized architectures targeting het-
erophily with ad-hoc techniques, Di Giovanni et al. (2022)
devise a more principled approach called Gradient Flow
Framework (GraFF). It is a physics-inspired generalization
of vanilla Graph Convolutional Networks (GCNs). Starting
from the interpretation of residual neural networks as dis-
crete dynamical systems, they derive several existing archi-
tectures as special cases of the discretization of the gradient
flow of a specific energy functional. They find that the frame-
work manages to adapt to both homophilic and heterophilic
settings via the spectrum of one of its channel-mixing ma-
trices. Its positive and negative eigenvalues correspond to
attractive and repulsive forces, respectively, between adja-
cent node representations in latent space. Hence, GraFF
models are able to align representations in certain subspaces
while separating them in other subspaces, supposedly en-
abling them to deal with any degree of homophily.

In this work, we investigate how the spectrum of the relevant
channel-mixing matrix and, thus, the attraction/repulsion
dynamics behave under varying homophily of the input
graph. We hypothesize that for strongly homophilic graphs,
the spectrum will be skewed toward positive and for het-
erophilic graphs toward negative eigenvalues. To this end,
we run empirical experiments on both synthetic and real-
world datasets with varying homophily (Abu-El-Haija et al.,
2019; Platonov et al., 2023). Section 2 provides the required
mathematical background, Section 3 establishes the con-
nection between attraction/repulsion and homophily, and
Section 4 discusses our empirical results.

2. Theoretical Background
We consider semi-supervised node classification on a con-
nected, unweighted input graph G = (V,E) with n = |V |
nodes, m = |E| edges, feature matrix X ∈ Rn×d consisting
of rows x⊤

i ∈ Rd, class label vector y ∈ {1, . . . , c}n and
symmetrically normalized adjacency matrix Â ∈ Rn×n.
We denote by di,in and di,out the in-degree and out-degree
of node i ∈ V , respectively, and define the balanced de-
gree di :=

1
2 (di,in + di,out) which due to the connectedness

assumption is strictly positive. For an arbitrary matrix M,
we define its symmetrization as Msym := 1

2 (M + M⊤).
If M is positive semi-definite, the weighted inner prod-
uct ⟨x,y⟩M := x⊤My and its induced weighted norm
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∥x∥M :=
√

⟨x,x⟩A are well-defined.

2.1. Measuring Homophily

While homophily originally is a concept from chemistry, we
are concerned with its analogon in network analysis. There,
it describes the degree to which adjacent vertices in a graph
are similar to each other (McPherson et al., 2001). In the
case of a classification task, the most common quantification
is the homophily ratio (Zhu et al., 2020; Ma et al., 2022),
the fraction of edges that connect nodes of the same class:

homophily(G,y) =
|{(i, j) ∈ E | yu = yv}|

|E|
(1)

This definition provides a scalar characterization of ho-
mophily but to do so necessarily averages effects across
classes. If there are more than two classes, some pairs
might exhibit strong homophily while others exhibit strong
heterophily. For these cases, more fine-grained definitions
exist that capture pair-wise class interactions, like the class-
compatibility matrix (Zhu et al., 2020). Favoring a rough
characterization that lives on a linear scale, we stick with
Equation (1) in this study.

2.2. GNNs as Dynamical Systems

A residual GNN1 can be viewed as simulating a discretized
ordinary differential equation (ODE) (Chen et al., 2018).
Let GNNθ : Rd → Rd be a GNN layer with parameters θ.
Now consider a first-order ODE of the form

Ẋ(t) = GNNθ(X(t)) (2)

evolving the initial state X(0) = X for t ≥ 0. To discretize
this, we choose a step size τ > 0 and construct the Taylor
expansion around X(t):

X(t+ τ) = X(t) + τ GNNθ(X(t)) +O(τ2).

By dropping all higher-order terms, we obtain the forward
Euler method, which is the most fundamental numerical
algorithm for approximately solving ODEs like Equation (2).
It starts at X(0) := X and iteratively updates

X(k+1) := X(k) + τ GNNθ(X
(k)), (3)

for k = 0, . . . , N − 1. This is reminiscent of an N -layer
residual neural network with the parameters θ shared across
layers. If the step size τ is sufficiently small, we have
X(k) ≈ X(kτ). The ODE dynamics can be recovered for
τ → 0 as the continuous-time limit of the GNN.

2.3. Restricting to Gradient Flows

The ODE (2) is called a gradient flow if there exists an
energy functional Eθ : Rn → R such that the right-hand

1In fact, any residual neural network

side is its negative gradient:

GNNθ(X(t)) = −∇Eθ(X(t)). (4)

By construction, the energy Eθ decreases monotonically
along a solution since

d

dt
Eθ(X(t)) = ⟨−∇Eθ(X(t)), Ẋ(t)⟩

= −∥∇Eθ(X(t))∥2

≤ 0.

(5)

and the corresponding forward Euler step simulation algo-
rithm obtained by plugging (4) into (3) is gradient descent:

X(k+1) = X(k) − τ∇Eθ(X(k)) (6)

Due to the energy minimization perspective, gradient flow
ODEs are ubiquitous in physics. As they provide a high
amount of interpretability, Di Giovanni et al. exclusively
consider gradient flow discretizations. The only remaining
design choice then is the definition of Eθ.

2.4. The GraFF Energy

Consider the node features as particles in Rd with energy Eθ.
Generalizing the well-known Dirichlet energy stemming
from the heat diffusion equation, Di Giovanni et al. propose
the following generic quadratic energy parameterized by
θ = {W,Ω} ⊆ Rd×d:

Eθ(X) := 1
2

∑
i∈V

∥xi∥2Ω︸ ︷︷ ︸
external energy

− 1
2

∑
(i,j)∈E

Âij⟨xi,xj⟩W︸ ︷︷ ︸
internal energy

.
(7)

The first term is independent of Â and describes an external
energy component, while the second term accounts for pair-
wise interactions. By differentiation, we can derive the
corresponding gradient flow equation which is

Ẋ(t) = −∇Eθ(X(t)) = ÂX(t)Wsym −X(t)Ωsym. (8)

Note that the parameter matrices W,Ω appear in their sym-
metrized form. This can be seen by vectorizing the equation
and using that the Hessian of Eθ must be symmetric (Di Gio-
vanni et al., Appendix B). Without loss of generality, we
thus drop the superscript and, from now on, assume W,Ω
to be symmetric in the first place. The resulting GraFF-NN
definition by plugging (8) into (3) reads:

X(k+1) = X(k) + τ(ÂX(k)W −X(k)Ω). (9)

We call W the internal and Ω the external channel-mixing
matrix, respectively. By setting τ = 1 and Ω = 0, we
obtain a vanilla GCN with residual connection, shared sym-
metric weights, and without non-linear activation. However,
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Di Giovanni et al. prove that Eθ also decreases along solu-
tions of an ”upgraded” version of Equation (8) that includes
a non-linearity. Other inductive biases, i.e., restrictions
to the channel-mixing matrices, yield further established
architectures as special cases.

3. Attraction and Homophily
By virtue of Equation (9), we have a GNN at hand that sim-
ulates the gradient flow of the energy functional Eθ defined
in Equation (7). We can use this connection to gain more
insight into the dynamics of such a GNN. To this end, we
require a notion of derivatives on graphs: the graph gradient
is the edge signal ∇X ∈ Rm×d with rows given by

∇x(i,j) :=
1√
dj

xj − 1√
di
xi

which compares the normalized features of the endpoints
of each edge. To make a connection with Equation (7),
consider the summation
1
2

∑
(i,j)∈E

∥∇x(i,j)∥2W = 1
2

∑
(i,j)∈E

∥ 1√
dj

xj − 1√
di
xi∥2W

= 1
2

∑
(i,j)∈E

(
1
di
∥xi∥2W + 1

dj
∥xj∥2W − 2√

didj

⟨xi,xj⟩W
)

=
∑
i∈V

∥xi∥2W −
∑

(i,j)∈E

Âij⟨xi,xj⟩W (10)

using that

1
2

∑
(i,j)∈E

1
di
∥xi∥2W + 1

2

∑
(j,i)∈E

1
di
∥xi∥2W

= 1
2

∑
i∈V

1
di
∥xi∥2W

∑
j:(i,j)∈E︸ ︷︷ ︸

di,out

1 + 1
2

∑
i∈V

1
di
∥xi∥2W

∑
j:(j,i)∈E

1

︸ ︷︷ ︸
di,in

=
∑
i∈V

1
di

di,in+di,out
2 ∥xi∥2W =

∑
i∈V

∥xi∥2W.

Using the trivial property ∥·∥Ω = ∥·∥Ω−W + ∥·∥W and the
observation (10) yields the following decomposition of the
energy functional:

2Eθ(X) =
∑
i∈V

∥xi∥2Ω −
∑

(i,j)∈E

Âij⟨xi,xj⟩W

=
∑
i∈V

∥xi∥2Ω−W +
∑
i∈V

∥xi∥2W

−
∑

(i,j)∈E

Âij⟨xi,xj⟩W

=
∑
i∈V

∥xi∥2Ω−W + 1
2

∑
(i,j)∈E

∥∇x(i,j)∥2W (11)

To analyze the second term further, consider the eigenvalue
decomposition of the (symmetric!) internal channel mix-
ing matrix W = TΛT⊤. Split Λ = Λ+ − Λ− into

the positive part Λ+ := max{0,Λ} and the negative part
Λ+ := max{0,−Λ} of the spectrum to obtain

W = TΛ+T
⊤︸ ︷︷ ︸

=:W+

−TΛ−T
⊤︸ ︷︷ ︸

=:W−

.

By design, W+ and W− are symmetric positive definite.
Hence, their Cholesky decompositions W+ = Θ⊤

+Θ+ and
W− = Θ⊤

−Θ− are well-defined. We use them to partition
the gradient norm:

∥∇x(i,j)∥2W = ∥∇x(i,j)∥2W+
− ∥∇x(i,j)∥2W−

= ∥Θ+∇x(i,j)∥2 − ∥Θ−∇x(i,j)∥2

Plugging this back into Equation (11) gives us a final, inter-
pretable expression for the energy Eθ:

Eθ(X) = 1
2

∑
i∈V

∥xi∥2Ω−W

+ 1
4

∑
(i,j)∈E

∥Θ+∇x(i,j)∥2︸ ︷︷ ︸
attraction

− 1
4

∑
(i,j)∈E

∥Θ−∇x(i,j)∥2︸ ︷︷ ︸
repulsion

(12)

Recall that by Equation (5), the energy Eθ decreases along a
solution of Equation (8), i.e., with deeper layers of the GNN
specified by Equation (9). Hence, the terms ∥Θ+∇x(i,j)∥2
are minimized over time, which means adjacent node rep-
resentations become aligned in the non-null singular sub-
spaces of Θ+. This behavior can be interpreted as attractive
forces that lead to a smoothing effect. Analogously, in
the orthogonal complement, adjacent representations are
pushed apart by repulsive forces stemming from the maxi-
mization leading to a sharpening effect due to the eventual
maximization of ∥Θ−∇x(i,j)∥2.

To prevent confusion, we remark that there are two unrelated
minimization processes going on. One is the minimization
of Eθ by the evolution of the gradient flow ODE Equation (8)
during inference, which leads to the attraction and repulsion
dynamics discussed above. The other is the minimization of
some empirical risk function to optimize the parameters θ
of the GNN during training, which is how Θ+ and Θ− are
obtained in the first place.

Di Giovanni et al. claim that attractive dynamics in the
latent space of GNNs benefit classification on homophilic
graphs while repulsive behavior is advantageous in the het-
erophilic case. Intuitively, this seems reasonable: if adjacent
features have similar representations, they should be harder
to discriminate, which is helpful on homophilic graphs but
detrimental on heterophilic graphs. On the other hand, if
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features are very discontinuous along edges, then it should
be easier for a classifier to tell them apart on heterophilic
graphs, but in turn, on homophilic graphs the ”neighbors-
are-similar-to-me” information is lost.

4. Experiments
In this section, we empirically investigate the connection
between attraction/repulsion dynamics in latent space and
graph homophily that the theory of the Gradient Flow Frame-
work suggests (cp. Section 3). Recalling that the internal
channel-mixing matrix W encodes attractive and repulsive
behavior via its positive and negative eigenspaces, respec-
tively, we pose the following

Hypothesis. Based on the attraction-homophily connection,
we conjecture that the internal channel-mixing matrix W
should exhibit more positive eigenvalues on graphs with
higher homophily and more negative eigenvalues on graphs
with lower homophily. More precisely:

1. The number of positive eigenvalues of W should be
proportional to the homophily ratio of the input graph:

rank(Λ+) ∝ homophily(G,y).

2. The number of negative eigenvalues of W should be
proportional to the heterophily ratio of the input graph:

rank(Λ−) ∝ 1− homophily(G,y).

4.1. Setup

To test this hypothesis, we conduct experiments on the Mix-
Hop synthetic dataset (Abu-El-Haija et al., 2019) and the
heterophilic graphs collected by Platonov et al. (2023). Our
source code uses the PyTorch Geometric Python library (Fey
& Lenssen, 2019) and is publicly available2.

For all experiments, we enclose the GraFF-NN with a two-
layer MLP encoder to project the input features into a latent
space with fixed dimensionality, and append a two-layer
MLP decoder to produce final classification logits. All
parameters are initialized using the conventional Glorot ini-
tialization scheme (Glorot & Bengio, 2010). We optimize
the standard cross-entropy loss with the Adaptive Moments
(Adam) SGD variant (Kingma & Ba, 2015). Table 1 details
the relevant hyperparameters we use throughout all experi-
ments. As a baseline, we also train a vanilla GCN with the
same hyperparameters.

4.2. Synthetic Graphs

The MixHop synthetic dataset contains 10 graphs with ho-
mophily ratios varying uniformly between 0 and 0.9. Each

2https://anonymous.4open.science/r/GDL/
Attraction_vs_Homophily.ipynb

HYPERPARAMETER VALUE

NETWORK DEPTH (N ) 10
LATENT SPACE DIM (d) 64
STEP SIZE (τ ) 1

# EPOCHS 100
LEARNING RATE 0.01

Table 1. Hyperparameter choices for our experiments.

graph has 5000 nodes that each belong to one of ten classes.
The node features are sampled from a 2D normal distribu-
tion per class. Table 2 provides essential dataset analytics.

#NODES #EDGES #FEATURES #CLASSES HOMOPHILY

5000 59,596 2 10 0 TO 0.9

Table 2. Basic facts about the MixHop synthetic dataset.

As a sanity check, Figure 1 compares the accuracies of
GraFF-NN and GCN on the validation and test split with
increasing homophily ratio. Matching the observations
by Di Giovanni et al., GraFF-NN performs better in the
heterophilic regime but lags slightly behind GCN’s perfor-
mance in the homophilic regime.

To provide insight into the eigenvalues of W, Table 4 lists
their summary statistics and Figure 2 visualizes their dis-
tributions as boxplots for different homophily levels. Sur-
prisingly, the distributions are irrefutably similar: centered
around a value close to zero, with standard deviations close
to one, and a balanced division into positive and negative
eigenvalues. We consistently observe equivalent results for
various choices of the hyperparameters in Table 1 and re-
gardless of whether or not we apply a non-linearity (ReLU)
after each layer.

4.3. Real-world Graphs

To rule out the possibility that the results obtained are spe-
cific to the synthetic dataset, we run the same evaluations
on a real-world dataset of five heterophilic graphs from
Platonov et al.. Their analytics are given in Table 3.

GRAPH #NODES #EDGES #FEATURES #CLASSES HOMOPHILY

ROMAN-EMPIRE 22,662 32,927 300 18 0.05
AMAZON-RATINGS 24,492 93,050 300 5 0.38
TOLOKERS 11,758 519,000 10 2 0.59
MINESWEEPER 10,000 39,402 7 2 0.68
QUESTIONS 48,921 153,540 301 2 0.84

Table 3. Basic facts about the real-world datasets.

However, Figure 3, Table 5, and Figure 4 show that we
receive analogous results on the real-world graphs. This
suggests that our empirical findings generalize and there-
fore, interestingly, the Hypothesis does not hold. Rather,

https://anonymous.4open.science/r/GDL/Attraction_vs_Homophily.ipynb
https://anonymous.4open.science/r/GDL/Attraction_vs_Homophily.ipynb
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Figure 1. Accuracies of GraFF-NN and GCN on the validation and
test split of synthetic graphs with varying homophily ratio.

HOMOPHILY MEAN STD MIN MAX #NEG #POS

0.0 -0.086 0.969 -2.113 1.713 34 30
0.1 -0.074 1.015 -2.357 1.792 33 31
0.2 -0.096 0.989 -1.958 1.658 34 30
0.3 -0.099 1.004 -1.980 1.786 34 30
0.4 -0.056 0.998 -2.093 1.700 33 31
0.5 -0.076 1.008 -2.228 1.823 34 30
0.6 -0.090 0.998 -1.966 1.785 35 29
0.7 -0.097 0.983 -2.114 1.646 35 29
0.8 -0.076 0.999 -2.197 1.781 34 30
0.9 -0.055 0.995 -1.986 1.812 33 31

Table 4. Eigenvalue statistics of W when trained on synthetic
graphs with varying homophily ratio.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
homophily ratio

2

1

0

1

2

ei
ge

nv
al

ue
s o

f W

Figure 2. Boxplot of the eigenvalue distributions of W when
trained on synthetic graphs with varying homophily ratio.
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Figure 3. Accuracies of GraFF-NN and GCN on the validation and
test split of real-world graphs with varying homophily ratio.

GRAPH (HOMOPHILY) MEAN STD MIN MAX #NEG #POS

ROMAN-EMPIRE
(0.05) -0.087 0.974 -2.023 1.740 33 31

AMAZON-RATINGS
(0.38) -0.096 0.967 -1.892 1.745 34 30

TOLOKERS
(0.59) -0.049 0.990 -2.000 1.645 32 32

MINESWEEPER
(0.68) -0.095 0.976 -2.003 1.670 33 31

QUESTIONS
(0.84) -0.030 0.995 -1.908 1.756 32 32

Table 5. Eigenvalue statistics of W when trained on real-world
graphs with varying homophily ratio.
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Figure 4. Boxplot of the eigenvalue distributions of W when
trained on real-world graphs with varying homophily ratio.
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the results show a slight preference for the negative side
of the spectrum regardless of the homophily ratio. Future
work should investigate whether this bias is statistically
significant. Furthermore, the blatant closeness of the eigen-
value distributions to being normalized raises the question
if the impact of the initalization of W might outweigh the
attraction/repulsion dynamics.

5. Conclusion
In this work, we investigated the relationship between ho-
mophily and attractive/repulsive forces in the latent space
of GNNs as described by the Gradient Flow Framework
(GraFF). We first revisited the derivation of GraFF from the
interpretation of neural networks as discretized ordinary dif-
ferential equations. Based on the attraction-homophily con-
nection, we then hypothesized that the number of positive
(negative) eigenvalues of the internal channel-mixing matrix
should be proportional to the homophily (heterophily) ratio.
However, our experiments on both synthetic and real-world
graphs suggest that this hypothesis is false. If anything, the
eigenvalue distribution seems to be stubbornly agnostic of
the graph homophily ratio, which is a surprising result.

However, there is a caveat to our study: First, we merely
considered the simplest notion of homophily, the edge ho-
mophily ratio, and only conducted a small number of ex-
periments with the same model architecture on just two
datasets due to severe computational limitations. Future
work should explore large-scale cross-validated analyses on
a myriad of datasets with various homophily measures and
model configurations. In addition, a statistical significance
test is needed for the slight overall bias towards negative
eigenvalues that the experiments reveal. Finally, the prox-
imity of the eigenvalue distribution to the initialized state
calls for future endeavors to compare the effect of different
parameter initialization schemes.
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