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Abstract—Efficient factory automation is crucial for modern
manufacturing, but traditional pre-programmed approaches of-
ten fall short in handling dynamic and complex tasks. This
report investigates the application of cooperative multi-agent
reinforcement learning to address these challenges in a simulated
factory environment. By training multiple robot arms to collab-
orate in transporting and sorting objects, we aim to optimise
efficiency and adaptability in factory manipulation. Our results
show that training successfully cooperating agents is hard and
time-consuming as well and can, up to now, only be achieved for
a simplified problem setting.
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I. INTRODUCTION

A. Motivation

In today’s industrial and logistics environments, factory ma-
nipulation tasks such as automated pick-and-place (P&P) play
a key role. Our work addresses a critical challenge: optimising
the performance of robotic co-manipulation in a factory, lead-
ing to improvement in efficiency and reduced costs. We utilise
multi-agent reinforcement learning (RL) to control the move-
ments of robot arms in a factory setting. RL offers significant
advantages over traditional control techniques. Conventional
robotic picking systems (cp. Pérez-Francisco et al., 1998;
Bozma and Kalalıoğlu, 2012; Yu et al., 2017; Han et al., 2020)
rely on pre-programmed motions, requiring precise planning
for every possible item configuration, particularly in scenarios
involving multiple robots with overlapping workspaces. Those
approaches are time-consuming, inflexible, and expensive to
maintain. In contrast, multi-agent RL allows to learn near-
optimal cooperative behaviour simply from environmental
interactions in an end-to-end fashion. We adopt a multi-agent
learning approach for factory manipulation problems in the
representative and common setting of P&P along a moving
conveyor belt. Our open-source implementation is available at
https://github.com/nkirschi/Factory-MARL.

B. Related Work

Exploring the optimisation of robotic co-manipulation on
conveyor systems through multi-agent RL remains a mostly
unexplored domain, particularly concerning real-world com-
plexities. In the only line of work we are aware of, Lan
et al. (2021, 2022) employ deep Q-learning to obtain a global
puppeteer policy, but not true multi-agent RL with partially
observable state space. To tackle partial observability, there
exists a myriad of methods and paradigms in the multi-
agent literature (Nguyen et al., 2020). A much-noticed study
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Fig. 1: The MuJoCo-based factory simulation considered in
this work. Note that the displayed score indicator is per bucket
rather than per arm.

conducted by Peng et al. (2021) introduces FACMAC, a co-
operative multi-agent RL algorithm well-suited for managing
factored critic structures. To enhance the system, Muglich et al.
(2022) integrate equivariant networks that are able to leverage
symmetry in the environment, which is usually present in the
factory context. This integrated approach holds promise for
significantly improving collaboration and efficiency in robotic
P&P endeavours.

C. Report Structure

Section II describes our technical setup in detail, Section III
explains the reward shaping process, Sections IV and V
discuss our results for a continuous and a discrete notion of
control, respectively, and Section VI concludes the report.

II. OUR SETUP

A. The Environment

For lack of a real-world factory environment, our work consid-
ers a simulated environment created by Röstel (2024) based on
DeepMind’s MuJoCo physics engine (Howell et al., 2022). As
shown in Figure 1, it consists of an accelerating conveyor belt
transporting cuboid objects, and an even number of robot arms
along both sides of the conveyor belt. The spawn frequency
of new cubes linearly increases with the number of arms. The
robots are tasked with picking cubes from the belt and placing
them in their side’s basket, one at a time. The per-bucket score
is incremented by one whenever a new cube is successfully
placed. Once a cube is missed by all robots, or an arm collides
with anything, the episode ends. The objective is maximising
the sum of the bucket scores, i.e., the total number of cubes
collected within an episode.
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TABLE I: Overview of control definitions, where n refers to
the number of arms, DOF their degrees of freedom for moving
and grasping, N is the maximum number of simultaneously
present objects, and d the number of parameters needed to
describe an object’s pose and velocity. Throughout this work,
n ∈ {2, 4}, DOF = 7 + 1, N = 10, and d = 7 + 6.

full joint control
(Section IV)

IK toggling control
(Section V)

action space [−1, 1]
per joint and arm

{ON, OFF}
per arm

observation
space

Rn·DOF+N·d

joint and cube states
Rn·DOF+N·d+n·DOF

joint and cube states
+ proposed IK control

experimental
choices

learning scope
(from-scratch, delta, base)

OFF behaviour
(pause, retreat, base)

B. The IK Base Policy

As a pre-programmed baseline to compare our RL agents to,
we employ a classic inverse kinematics (IK) policy. It operates
as a state machine1, sequentially handling individual target
objects within the environment. Joint angles for control are
calculated via IK based on the desired position of the current
target object. Each instance of the policy functions indepen-
dently, disregarding the positions of other arms but considering
the target objects of other instances. While effective in single-
arm scenarios, this approach suffers from a high collision rate
when multiple arms are involved, hindering its applicability in
complex, multi-agent environments.

C. The Control

To investigate the effectiveness of RL in this context, we em-
ploy two classes of control scenarios, which are summarised in
Table I. In the full joint control scenario, the goal is to directly
learn policies for controlling the robot arms in all their degrees
of freedom using RL. In the IK toggling scenario, RL acts as
a higher-level coordinator for IK base policy-controlled arms.
By comparing these approaches, we aim to assess the benefits
and limitations of each method in addressing the complex
challenges of cooperative factory manipulation.

D. The Training

We train all RL agents using the Stable Baselines 3 imple-
mentation (Raffin et al., 2021) of the state-of-the-art on-policy
Proximal Policy Optimisation (PPO) algorithm with a discount
factor of 0.99 for a maximum number of five million time
steps. The policy network is an MLP with two hidden layers
containing 128 neurons each.

III. REWARD SHAPING

A. Additional Incentives

Due to the discrete, highly sparse reward, if only the score of
the buckets is used, with simply performing random move-
ments, a positive reward is extremely unlikely, making it
difficult to train with this reward. For this reason, a denser
reward function is required. We define two incentives in
addition to the score:

I0: Reward new cubes placed into bucket
I1: Reward the gripper approaching the closest cube
I2: Reward the closest cube approaching the bucket

1Seven states: IDLE, GO TO GRASP, GRASP APPROACH,
GRASP CLOSE, POST GRASP, GO TO RELEASE, RELEASE

Incentives I1 and I2 also penalise retreat from the target
with negative rewards, preventing the arms from learning to
oscillate for better accumulated rewards. The overall reward
function is now a weighted average of these incentives plus a
constant offset r0:

r = r0 + ω0I0 + ω1I1 + ω2I2

The base reward r0 is needed to ”keep the episode running”.
Without it, particularly at the beginning of an episode when
the cubes are moving on the conveyor belt and part of it away
from the bucket, the average reward would be negative. As a
result, the RL agent would learn to terminate the episode (e.g.,
by hitting the environment) to avoid accumulating negative
reward.

When an arm scores, the cube is removed, and thus the
distance to the closest cube as well as the distance of this
cube to the bucket suddenly skyrocket in this time step. To
avoid an outlier negative reward signal, I1 and I2 should be
ignored for this single time step, resulting in

r = r0 +

{
ω0I0, if I0 > 0

ω1I1 + ω2I2, otherwise.

B. Parameter Choice

The rewards for the intermediate goals of approaching the cube
and bringing the cube to the bucket are necessary to obtain a
less sparse reward function. However, their reward should not
override the reward of the ultimate goal: the score. It has been
found that, for this reason, ω0 should be at least twice as high
as ω1 and ω2.

When an arm has a cube in its gripper and is positioned
directly above the bucket, the incentives I1 and I2 are opposed.
To avoid getting stuck in a local minimum that can occur for
ω1 > ω2, it is best to set ω2 strictly larger than ω1. Our
investigations suggest a ratio ω2

ω1
between 1.5 and 2.

If the base reward is too low, even the IK base policy has parts
of the episode where the reward is negative. For instance, when
the gripper is lifting the cube from the conveyor belt (which
the base policy performs vertically), the distance to the bucket
(located at height 0) increases. The reward should be large
enough to handle these fluctuations. On the other hand, if the
base reward is too high, it overpowers the other incentives.
This hinders the learning process and makes the RL agent learn
only to keep the episode running. Our investigations suggest
choosing r0 between 2ω1 and 0.5ω0.

Overall, we have the following constraints:

2ω1 < r0 < 0.5ω0

1.5ω1 < ω2 < 2ω1

Note that w0 ≥ 2w1, 2w2 is implied by the other two
constraints. Furthermore, the parameters can be scaled by a
constant without affecting the learning process, so w.l.o.g. we
can fix ω0 = 1. Our final experiments use the following values:

r0 = 0.4, ω0 = 1, ω1 = 0.2, ω2 = 0.4

With these, a typical reward evolution of the IK base policy
looks as shown in Figure 2. There, the four big spikes indicate
a score increment. The large negative spikes around the time
steps 45, 140, 180, and 270 correspond to an arm attempting
to grab a cube and lifting it.



Fig. 2: The reward function over time in typical episode of
the IK base policy with a single arm acting.

IV. FULL JOINT CONTROL

A. Setting

In the continuous control setting, the RL agents directly learn
policies for controlling robot arm joint states. Each joint’s
action is represented by a scalar in [−1, 1], enabling precise
control. The agent observes the robot’s joint states and the
positions of the cubes in the environment. We explore two
learning approaches: learning the entire joint control policy
from scratch, and delta learning, where the agent learns an
optimal deviation from the IK base policy. To establish a
baseline, we also execute the IK base policy without any
learning.

B. Results

Even in the simplest case of n = 2 robots, using the true sparse
reward (ω0 = 1, r0, ω1, ω2 = 0) yields no discernible learning,
resulting in essentially random agent behaviour. To encourage
more utilisation of the IK base policy in the delta case, we
initially considered an additional penalty term based on the
magnitude of the deviation, which, however, did not lead to
any improvement. Incorporating a progress-based reward, as
outlined in Section III, affords a slight improvement, with the
agents successfully learning to avoid collisions and attempting,
but not succeeding at, grasps. As shown in Table IIa, the
average episode duration increases compared to the base
reward condition. Additionally, the primary cause of episode
termination shifts from collisions to missed cubes, a contrast
to the base execution, where collisions are the predominant
termination factor. However, neither the from-scratch nor the
delta learnt agents exhibit any instances of successful gripping,
indicating a significant challenge in mastering this complex
task.

V. IK TOGGLING CONTROL

A. Setting

Due to the immense challenges posed by the continuous
control setting, we introduce the IK toggling control setting as
a simplification to verify that learning successful cooperation
is possible at all. While the arms still rely on the IK base
policy for low-level control, a higher-level coordinator agent
determines when to activate or deactivate individual arms.
This leads to a heavily reduced action space for each robot
arm, which is now binary. The coordinator’s observation space
includes the joint and cube states like before, as well as the
proposed actions from the IK base policy. When activated
by the coordinator, an arm executes its base policy. Upon

TABLE II: Test results averaged over 100 episodes

(a) Full joint control on two arms

learning scope avg episode score avg episode length

from-scratch (0, 0) 219.9

delta (0, 0) 220.5

base (1.65,1.17) 208.8

(b) IK toggling control on four arms

OFF behaviour avg episode score avg episode length

pause (2.01,1.5) 173.04

retreat (0, 2.12) 216.74

base (1.18, 1.16) 119.74

deactivation, there are two fundamental strategies: either the
arm maintains its current position until reactivated (pause),
or it returns to a predefined safe position (retreat). As a
baseline, we again employ the pure IK base policies without
any learning from the coordinator (base).

B. Results

Contrary to the full joint control setting, the coordinator
agent manages to improve upon the baseline, even in the
more complex setting of n = 4 arms, the results of which
are shown in Table IIb. The pause strategy achieves higher
basket scores than both the two-arm and four-arm baselines
but only outperforms the four-arm baseline in episode length.
The retreat strategy also outperforms the two-arm baseline’s
episode length to the same extent as the from-scratch and delta
learning approaches. However, while it has the highest single
basket score out of all experiments, it fails to score any cubes
at all in the other basket, which our investigations suggest
results from overly cautious behaviour involving premature
retreating on that side of the belt.

VI. CONCLUSION AND FUTURE WORK

We employed multi-agent RL to enable cooperative behaviour
of robots in a factory environment. Due to the extreme sparsity
of the true reward signal, we had to perform reward shaping
and experiment with different control definitions. While in the
continuous full control case the problem appears too hard for
the RL agents to learn any kind of gripping, the simplified
discrete IK toggling setting allows the robots to cooperate
successfully and outperform the IK base policy even without
the shaped reward. Overall, training successful agents turned
out to be just as time-consuming and expensive as classical
pre-programmed control techniques, making the usefulness of
RL in this domain questionable.

Future work is advised to interpolate between our continuous
and discrete settings to find the least restrictive control def-
inition where the IK base policy can still be outperformed.
Moreover, the introduction of auxiliary tasks (e.g., grip, carry,
release) and curriculum learning may alleviate the sparsity
issues and push the boundary further towards the full joint
control side. In the same vein, the recently published causality-
aware actor-critic algorithm Ji et al. (2024) promises to im-
prove exploration quality during training such that successful
gripping might happen by chance.
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