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Abstract

Diffusion Probabilistic Models (DPM) gained attention recently due to their mathe-
matical properties and competitive performance in image generation tasks. A major
ingredient in DPMs is the noise schedule which dictates the noising process that a
denoising model must learn to undo. We explore and compare different choices for
the noise schedule in a common framework on a non-standard dataset.

1 Introduction

With DALL-E 2 [10], Imagen [13], and Stable Diffusion [11] in 2022 alone, diffusion probabilistic
models have been on the rise. They were first introduced by Sohl-Dickstein et al. [15] and base off
a diffusion process where a small amount of noise is repeatedly added to a sample from the data
distribution until it becomes indistinguishable from random samples. The model then must learn
to undo this process, so that given any random noise as input it can "denoise" it into a sample that
follows the data distribution. Ho et al. [3] were the first to achieve competitive image generation
results with DPMs, and Dhariwal et al. [1] later showed that they are even capable of outperforming
state-of-the-art GAN-based models.

The performance of DPMs heavily relies on the choice of the noise schedule which governs the
amount of noise added in each diffusion step. Ho et al. [3] originally used a linear schedule due to its
simplicity but they noted that this is an arbitrary choice and more research on the noise schedule is
necessary. Nichol et al. [8] employ a cosine-based schedule and find that, while it does not improve
over the linear schedule per se, it might make the model more robust to fast sampling in the denoising
process where multiple steps are combined. Kigma et al. [6] propose to simply let a small neural
network learn the schedule jointly with the main model. In this vein, they indeed improve on the
log-likelihood but not on other important metrics that capture generation quality. Since the results
are inconclusive and the linear schedule is the most straightforward to implement, researchers seem
to have settled with it, focusing on other fundamental aspects like guidance [1, 4] and sampling
efficiency [16, 18, 14].

Contributions We are not aware of any comparative study that isolates the noise schedule of DPMs
and addresses it in-depth. In this work, we provide an extensive analytical and empirical comparison
of noise schedules and also include a constant schedule in the discussion which, to the best of our
knowledge, is not covered in the relevant literature. Furthermore, we base our experiments off the
Oxford Flowers dataset [9] to obtain models and results that are independent of benchmark datasets
like CIFAR-10 and ImageNet which are almost exclusively used in related work. Our codebase will
be made publicly available as open source.

2 Diffusion Probabilistic Models

In this section, we provide a formal description of DPMs. Since they are probabilistic models,
we view the input as a standardised random variable x0 ∈ Rd with E[x0] = 0 and Var[x0] = 1
originating from some underlying distribution q(x0). We model the diffusion steps as a sequence of
T latent variables x1, . . . ,xT ∈ Rd of the same dimensionality. Note that recent advances loosen
this last requirement and resort to a lower-dimensional latent space for the sake of efficiency [11].
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2.1 Forward Process

The diffusion process itself in DPMs is constructed as a non-homogeneous Markov chain over the
latent variables [15, 3]. Hence, the posterior PDF q(x1, . . . ,xn | x0) factorises as follows:

q(x1, . . . ,xn | x0) =

T∏
t=1

q(xt | xt−1, xt−2 . . . ,x0︸ ︷︷ ︸
independent of xt

) =

T∏
t=1

q(xt | xt−1) (1)

A diffusion step is modelled by drawing from a normal distribution centred around a slightly down-
scaled version of the previous latent variable. The noising intensity of each step is governed by our
object of interest, the noise schedule (αt)

T
t=1 ∈ (0, 1)T , discussed in detail in Section 3. We have:

q(xt | xt−1) := N (xt−1;
√
αtxt−1, (1− αt)I)

i.e., xt =
√
αtxt−1 +

√
1− αtϵ for ϵ ∼ N (0, I)

(2)

As we will see, the cumulative products ᾱt :=
∏t

s=1 αs deserve a shorthand. By recursively unfolding
the recurrence (2) and exploiting the way Gaussians combine into Gaussians, we obtain an expression
for the marginal distribution of xt in terms of only the initial input x0.
Lemma 1 (Instant Sampling). Sampling xt can be done in closed form:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

i.e., xt =
√
ᾱtx0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I)

(3)

Equation (3) tells us that, to obtain a latent variable realisation, we do not need to pass through all
intermediate steps but can fast-forward to any desired noise level directly. Furthermore, it yields an
asymptotic statement about the end of the chain.

Corollary 1. As T → ∞, the latent xT becomes standard Gaussian, since ᾱT
T→∞−−−−→ 0.

2.2 Backward Process

To reverse the diffusion process, we need to get hold of q(xt−1 | xt). However, obtaining this
reverse conditional distribution exactly is not tractable as its computation via Bayes’ theorem involves
marginalising over the unknown data distribution. Thus, we estimate it using a parameterised
model pθ(x0, . . . ,xT ) of the joint distribution that approximates the transition distributions so that
pθ(xt−1 |xt) ≈ q(xt−1 |xt). Motivated by q(xT |x0) ≈ N (xT ;0, I) for T large enough according
to Corollary 1, we initialise the reverse process by drawing from a standard normal distribution, i.e.,
set pθ(xT ) := N (xT ;0, I). For the actual pθ(xt−1 | xt), we utilise Bayes’ theorem and tedious
algebraic manipulations to obtain the corresponding forward process posteriors [7].
Theorem 1. When conditioning on x0, the reverse process transitions are given as

q(xt−1 | xt,x0) = N (xt−1, µ̃(xt,x0), σ̃
2
t I) (4)

µ̃(xt,x0) :=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x0 (5)

σ̃2
t :=

(1− αt)(1− ᾱt−1)

1− ᾱt
(6)

Thus, to match pθ(xt−1 | xt) closely to q(xt−1 | xt,x0), we parameterise it as a Gaussian as well.
While, interestingly, the variance σ̃2

t only depends on the schedule and we can hence match it exactly,
we inherently do not have access to x0 and thus to obtain the mean µ̃ we need to estimate it from the
available information. Rearranging (3) in Lemma 1 suggests that we can estimate x0 using a neural
network that predicts ϵθ(xt, t) ≈ ϵ. Hence, we parameterise the denoising process as

pθ(xt−1 | xt) := N (xt−1; µ̄(xt,
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
), σ̃2

t I)

i.e., xt−1 = 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + σ̃tϵ for ϵ ∼ N (0, I)

(7)

Note that we could equivalently parameterise x0 just as well. The architecture for ϵθ depends on the
type of data – for images, CNN auto-encoders like a U-Net are a common choice, since they bring a
suitable inductive bias and have empirically performed well on related tasks [12, 3, 1]. The timestep
input can be encoded via positional embeddings like in the Transformer architecture [17]. Since our
focus is not on architecture, we simply employ the deep U-Net from Ho et al. [3].
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2.3 Optimisation Objective

The interaction of pθ and q is reminiscent of the variational auto-encoder (VAE) paradigm [5]. In
fact, we can view a DPM as a hierarchical VAE where the chain is jointly optimised and the encoder
is parameter-free. For VAEs, the natural optimisation objective is maximising the log-likelihood of
the data. It has a tractable "evidence" lower bound (ELBO) which serves as a suitable proxy.
Lemma 2 (ELBO). For a hierarchical VAE with encoder qψ and decoder pθ, we have

Eq log(pθ(x)) ≥ Eq

[
log

pθ(x0,x1, . . . ,xT )

qψ(x1, . . .xT | x0)

]
. (8)

With a series of algebraic manipulations leveraging the Markov property analogous to (1) and applying
log rules, the general ELBO in (8) decomposes for the case of DPMs into the more interpretable
expression [15, 3]

Eq[log(pθ(x0 | x1))]︸ ︷︷ ︸
=:L0 (reconstruction quality)

−
T∑

t=2

Eq[DKL(q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt))]︸ ︷︷ ︸
=:Lt−1 (denoising matching quality)

−Eq[DKL(q(xT | x0) ∥ pθ(xT ))]|︸ ︷︷ ︸
=:LT (prior matching quality)

.

Note that the last summand LT is a small constant vanishing for T → ∞ due to Corollary 1 and
can therefore be ignored for optimisation. Similarly, although not constant, the first summand L0 is
heavily dominated by the summation term, which is thus the only one we consider for optimisation.
Since the KL divergence appearing in Lt−1 is comparing Gaussian PDFs, it can be calculated exactly.
By additionally unpacking xt according to Lemma 1, the true reverse transition according to (4), and
the estimated transition according to (7), we get

Lt−1 =
1

2σ̄2
t

(1− αt)
2

αt(1− ᾱt)
Eϵ,xt

[∥ϵθ(xt, t)− ϵ∥] (6)
=

1

2

(1− αt)

αt(1− ᾱt−1)
Eϵ,xt

[∥ϵθ(xt, t)− ϵ∥] . (9)

Finally, by expressing the summation term
∑

Lt−1 as expectation over a discrete uniform distribution
and ignoring time-independent constants, we arrive at the following optimisation problem:

θ∗ := argmin
θ

Et∼U({2,...,T}),
ϵ∼N (0,I),x0∼q(x0)

[
(1− αt)

αt(1− ᾱt−1)
∥ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥

]
(10)

In practice, we run mini-batch gradient descent on Monte Carlo estimates of the expectation in (10).
This means that for every input in the batch, we sample a time step and Gaussian noise to compute
the loss, which is then averaged over the batch dimension.

3 Noise Schedules

Now we turn to the noise schedule (αt)
T
t=1 ∈ (0, 1)T which is the remaining fundamental modelling

choice. It determines the sampling procedure in (3) and the optimisation term in (10). We consider
both cases of fixed and learned schedules.

3.1 Fixed Schedules

The straightforward approach is to treat the noise schedule as a hyperparameter and thus fix it from
the very beginning. We discuss different options and illustrate the resulting latent mean ᾱt, which we
can interpret as "signal strength" due to Equation (3), for T = 1000 in Figure 1.

Constant Schedule. The simplest choice is to use a constant variance 1 − αt = C in each step.
This leads to an exponential signal decay ᾱt = (1− C)t. Since we need ᾱT = ε for a small ε > 0,
we set C = 1− T

√
ε. In this work, we choose ε = 0.01 and thus

αt =
T
√
0.01 ⇝ ᾱt = 0.01t/T . (11)

Linear Schedule. Ho et al. [3] apply a schedule where the step-wise noising variance 1 − αt

increases linearly from 0.0001 to 0.02, i.e.

αt = 0.9999− 1
T 0.0199t. ⇝ ᾱt =

∏t
s=1 αs (12)

Figure 1a shows that ᾱt has a long final tail of quasi-zero signal. This is sub-optimal as the last 20%
of the time steps are essentially not contributing to the diffusion process, and Nichol et al. show they
can indeed be skipped without forfeiting performance [8].
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Figure 1: Comparison fixed noise schedules for T = 1000. We clearly see the exponential noise
explosion of the constant schedule, the long all-noise tail of the linear schedule, the uniform noising
behaviour of the hyperbolic schedule, and the warm-up/cool-down effect of the cosine^2 schedule.

Hyperbolic Schedule. In the original paper, Sohl-Dickstein et al. [15] draw from the idea that the
forward process should remove 1

T of the original signal in each step. That is, the first step destroys 1
T

of the input, the second step destroys 1
T−1 of the first latent variable (which has T−1

T signal left) etc.
These fractions determine the step variance 1− αt =

1
T−t+1 and thus we get

αt :=
1

1 + 1
T−t

⇝ ᾱt =

t∏
s=1

T − s

T − (s− 1)
= 1− t

T . (13)

Hence by construction, the signal strength ᾱt decays linearly. In the implementation, we force αt to
stay within the interval [10−4, 1

2 ] for numerical stability.

Cosine^2 Schedule. Nichol et al. [8] dislike the linear schedule’s long flat ᾱt tail and use a squared
cosinusoid f(t) = cos(π2

t/T+s
1+s )2 due to its symmetry and quasi-linear drop midway through:

αt :=
f(t)

f(t− 1)
⇝ ᾱt =

f(t)

f(0)
(14)

The authors introduce a small shift s = 0.008 as without it the noise in the initial time steps is
imperceptible due to the discrete data, which slows down training considerably. Furthermore, they
cap αt at 0.999 for numerical stability.

3.2 Learned Schedule

Instead of fixing the noise schedule beforehand, Kigma et al. [6] propose to parameterise it and train
it jointly with the model. To this end, they introduce a monotonic network

γη(t) := l1(t/T ) + l3

(
2 ∗ σ

(
l2
(
2(t/T − 0.5)

)
− 0.5

))
/n (15)

where σ is the expit sigmoid activation and l1 : R → R, l2 : R → Rn, l3 : Rn → R are monotonic
linear layers, i.e., their parameters are restricted to be non-negative. The noise schedule can then be
defined as

αt :=
σ(−γη(t))

σ(−γη(t− 1))
⇝ ᾱt = σ(−γη(t)). (16)

The key difficulty with the learned approach is parameter initialisation. Since the optimisation
procedure samples using the schedule from the very first instance, we must ensure that ᾱt has a
reasonable initial shape and is numerically stable. The highly specific form of γη in (15) stems from
this concern. If we initialise the parameters of l2 and l3 according to a standard normal distribution,
then the rescalings and shifts guarantee that the second summand overall is standard Gaussian, too.
If we furthermore initialise l1(t) = lmin + (lmax − lmin)t with constants lmin, lmax ≥ 0, then any
initialisation of the network will yield l1(t/T ) slightly distorted by standard Gaussian fluctuations.
In this work, we set lmin = −10 and lmax = 10.
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4 Experiments

To empirically compare the noise schedules, we train DPMs on the Oxford Flowers dataset [9] from
the Visual Geometry Group. It is a comparatively small set of around 8000 photos of common UK
flowers and thus well-suited for an unconditional image generation task. We resize and centre-crop
all photos to 64x64 pixels and augment the dataset with horizontal flips which constitutes an invariant
transformation on the distribution of flower photos.

For evaluation, we calculate the loss (10) and the Fréchet Inception Distance (FID) on a held-out
test set. The former is a proxy upper bound to the negative log-likelihood, which is associated with
the diversity of the generated samples [8, 6]. The latter is a standard metric for image generation
tasks and has been observed to capture the "realness" of the generated data distribution [2]. To
compute the FID, we first obtain the essential features of both the real and generated images by
feeding them through the Inception v3 image classification model and extracting the feature maps
after its convolutional block. Then we determine the mean µreal,µgen and covariance Σreal,Σgen over
the real and generated image features, respectively, to calculate

FID := |µreal − µgen|+ tr(Σreal +Σgen − 2
√
ΣrealΣgen). (17)

We tuned the hyperparameters with respect to these two metrics separately for each of the five noise
schedules, and report the best results per schedule in Table 1. The best performance is achieved by
the learned schedule, which was to be expected since the ability to dynamically adapt during training
is an unfair advantage over fixed schedules. However, the margin is not enormous: in terms of test set
loss, the linear schedule is close behind, and on the FID score the cosine schedule is second. The
constant and hyperbolic schedules consistently perform worst. Surprisingly, the rather ad-hoc linear
schedule performs reasonably well, whereas the carefully crafted squared cosine schedule exhibits a
mediocre test set loss.

Table 1: Metrics achieved with different noise schedules.
Schedule Definition Test Set Loss FID Score

constant (11) 1.55 · 10-4 154.8654
linear (12) 1.51 · 10-4 136.7476
hyperbolic (13) 2.75 · 10-4 145.8457
cosine^2 (14) 2.56 · 10-4 131.6321

learned (16) 1.40 · 10-4 120.3937

While the learned schedule appears to be the best overall choice, we would like to highlight the fact
that it complicates the implementation considerably and also introduces new hyperparameters for
initialisation that require careful tuning. So instead of fully abandoning the hyperparameters of fixed
schedules, the learned schedule merely replaces them with other ones.

The caveat of our empirical study is its limited breadth. Future work could include even more
schedule choices, train the DPMs on multiple datasets of various sizes, and evaluate the models at
different training stages to investigate the dynamics. Due to limited time and computational resources,
this was not possible for us.

5 Conclusion

Diffusion probabilistic models are entering the main stage of generative modelling. In this work,
we compared several noise schedules both analytically on a conceptual level and empirically on a
non-standard dataset. Our best results were achieved with a learned schedule, yet at the cost of more
involved implementation and initialisation. Out of the fixed schedules, both a linear and a squared
cosine schedule achieve satisfactory performance. However, the impact of the exact schedule choice
does not seem to be as significant as one would intuitively expect. Nevertheless, more research needs
to be done on this topic to get a definite answer.
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